Additives aided composting of green waste: Effects on organic matter degradation, compost maturity, and quality of the finished compost

2012 ◽  
Vol 114 ◽  
pp. 382-388 ◽  
Author(s):  
Jagdish Gabhane ◽  
SPM. Prince William ◽  
Rajnikant Bidyadhar ◽  
Priya Bhilawe ◽  
Duraisamy Anand ◽  
...  
2021 ◽  
Vol 13 (3) ◽  
pp. 1109
Author(s):  
Edgar Ricardo Oviedo-Ocaña ◽  
Angélica María Hernández-Gómez ◽  
Marcos Ríos ◽  
Anauribeth Portela ◽  
Viviana Sánchez-Torres ◽  
...  

The composting of green waste (GW) proceeds slowly due to the presence of slowly degradable compounds in that substrate. The introduction of amendments and bulking materials can improve organic matter degradation and end-product quality. However, additional strategies such as two-stage composting, can deal with the slow degradation of green waste. This paper evaluates the effect of two-stage composting on the process and end-product quality of the co-composting of green waste and food waste amended with sawdust and phosphate rock. A pilot-scale study was developed using two treatments (in triplicate each), one being a two-stage composting and the other being a traditional composting. The two treatments used the same mixture (wet weight): 46% green waste, 19% unprocessed food waste, 18% processed food waste, 13% sawdust, and 4% phosphate rock. The traditional composting observed a higher degradation rate of organic matter during the mesophilic and thermophilic phases and observed thermophilic temperatures were maintained for longer periods during these two phases compared to two-stage composting (i.e., six days). Nonetheless, during the cooling and maturation phases, the two treatments had similar behaviors with regard to temperature, pH, and electrical conductivity, and the end-products resulting from both treatments did not statistically differ. Therefore, from this study, it is concluded that other additional complementary strategies must be evaluated to further improve GW composting.


2020 ◽  
Vol 49 (1) ◽  
pp. 45-54
Author(s):  
A Rahman ◽  
MA Hashem ◽  
AKMA Kabir ◽  
MKJ Bhuiyan ◽  
MM Rahman

This study aimed to understand the degradation pattern of organic substances through different amount of red worms during vermicomposting of cattle manure. For this purpose, an experiment was conducted with three treatments e.g., T1 (vermicomposting of 25 kg cowdung using 50 g of red worms), T2 (vermicomposting of 25 kg cowdung using 100 g of red worms) and T3 (vermicomposting of 25 kg cowdung using 150 g of red worms) with 3 replications. Parameters studied were dry matter (DM), organic matter (OM), ash, organic carbon (OC), total nitrogen (TN), crude fiber (CF), carbon nitrogen ratio (C/N) and pH at different days of intervals. Results showed that the amount of red worms has a significant influence on the quality of the final vermicompost. The highest DM content was observed in T3 and the lowest DM content was observed in T1 after 45 days of composting. There were significant (p<0.001) higher reduction rate of OM, OC and CF were found in T3 compared to T1 and T2 and the differences were also significant (p<0.001) among days intervals over 45 days of experimental period. TN content gradually increases with the increase of time. There was significant (P<0.05) difference in TN alteration among treatments along with time intervals. There was significant differences (P<0.001) in C/N among treatments and a gradual increment of C/N was found with the advancement of the vermicomposting. There were a little changes in pH of all the treatments but those treatments were not followed a trend during the total experimental period. Finally, it may be concluded that organic matter degradation rate is faster in T3 compared to T1 and T2. These might be indicated that amount of red worms are an important factors of OM decomposition or digestion during vermicomposting period. Bang. J. Anim. Sci. 2020. 49 (1): 45-54


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Liqiang Meng ◽  
Weiguang Li ◽  
Shumei Zhang ◽  
Xiancheng Zhang ◽  
Yi Zhao ◽  
...  

AbstractIn present study, the effects of carbon sources on compost process and quality were evaluated in the lab-scale sewage sludge (SS) composting. The composting experiments were performed for 32 days in 5 L reactors. The results showed that carbon sources could change the nitrogen conversion and improve the compost quality. Especially, the readily degradable carbon source could promote organic matter degradation, improve nitrogen conversion process and accelerate compost maturation. The addition of glucose and sucrose could increase dissolved organic carbon, CO2 emission, dehydrogenase activity, nitrification and germination index during the SS composting. That's because glucose and sucrose could be quickly used by microbes as energy and carbon source substance to increase activity of microbes and ammonia assimilation. What's more, the NH3 emission was reduced by 26.9% and 32.1% in glucose and sucrose treatments, respectively. Therefore, the addition of readily degradable carbon source could reduce NH3 emission and improve compost maturity in the SS composting.


2012 ◽  
Vol 534 ◽  
pp. 230-234 ◽  
Author(s):  
Zhao Lin Huang ◽  
Ping Ning ◽  
Zhang Liu

composting is a process of organic matter degradation and transformation achieved by microorganism, which plays a leading role during composting processes. Inoculation with proper microorganisms can raise the temperature rapidly, shorten the time of the composting, increase the degradation of organic matter and improve the quality of compost. This paper summarized the functions of microorganism inoculum and suggested that in order to solve the problems: to become the dominant strain(s) for the microorganism inoculated in the composting process; to choose the species of microorganism inoculum,the optimal inoculation quantity and the time of inoculation should be studied.


2011 ◽  
Vol 281 ◽  
pp. 276-279
Author(s):  
Xin Wang ◽  
Dan Su ◽  
Hai Bo Li

Electrocoagulation method for textile dye wastewater treatment was investigated in this study. Results show that electrocoagulation can be used powerfully and effectively in organic matter degradation of textile industrial wastewater, where the extent of COD removal and decolorization are achieved about 75.45% and 84.62% after 25 minutes, respectively. pH for textile dye wastewater ascended higher than that of raw wastewater and temperature increased with electrolysis time. GC-MS spectra suggest that organic pollutants in textile dye wastewater are effectively oxidized and decomposed by direct current electrolysis. In addition, the quality of the upper layer liquid after electrolysis nearly meets the criteria of Discharge Standard of Water Pollutants for Dyeing and Finishing of Textile Industry (GB4287-92) of China.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1290
Author(s):  
Danica Fazekašová ◽  
Gabriela Barančíková ◽  
Juraj Fazekaš ◽  
Lenka Štofejová ◽  
Ján Halas ◽  
...  

This paper presents the results of pedological and phytocoenological research focused on the detailed research of chemical parameters (pH, organic carbon, and nutrients), risk elements (As-metalloid, Cd, Co, Cr, Cu, Ni, Pb, and Zn), and species composition of the vegetation of two different peatlands on the territory of Slovakia—Belianske Lúky (a fen) and Rudné (a bog). Sampling points were selected to characterize the profile of the organosol within the peatland, the soil profile between the peatland and the agricultural land, and the soil profile of the outlying agricultural land, which is used as permanent grassland. Based on phytocoenological records, a semi-quantitative analysis of taxa in accordance with the Braun–Blanquet scale was performed. The study revealed that the thickness of the peat horizon of the fen in comparison with the bog is very low. In terms of the quality of organic matter, the monitored peatlands are dominated by fresh plant residues such as cellulose and lignin. Differences between individual types of peatlands were also found in the soil reaction and the supply of nitrogen to the organic matter of peat. The values of the soil exchange reaction were neutral on the fen, as well as slightly alkaline but extremely low on the bog. A significantly higher nitrogen supply was found in the organic matter of the fen in contrast to the bog. At the same time, extremely low content of accessible P and an above-limit content of As in the surface horizons were also found on the fen. From the phytocoenological point of view, 22 plant species were identified on the fen, while only five species were identified on the bog, which also affected the higher diversity (H’) and equitability (e). The results of the statistical testing confirmed the diversity of the studied peatlands and the different impact of environmental variables on plant diversity.


Sign in / Sign up

Export Citation Format

Share Document