Differential Impedance Sensing platform for high selectivity antibody detection down to few counts: A case study on Dengue Virus

2022 ◽  
pp. 113996
Author(s):  
Paola Piedimonte ◽  
Laura Sola ◽  
Marina Cretich ◽  
Alessandro Gori ◽  
Marcella Chiari ◽  
...  
2003 ◽  
Vol 10 (2) ◽  
pp. 317-322 ◽  
Author(s):  
Angel Balmaseda ◽  
María G. Guzmán ◽  
Samantha Hammond ◽  
Guillermo Robleto ◽  
Carolina Flores ◽  
...  

ABSTRACT To evaluate alternative approaches to the serological diagnosis of dengue virus (DEN) infection, the detection of DEN-specific immunoglobulin M (IgM) and IgA antibodies in serum and saliva specimens was assessed in 147 patients with symptoms of DEN infection seen at the Ministry of Health in Nicaragua. Seventy-two serum samples were determined to be positive for anti-DEN antibodies by IgM capture enzyme-linked immunosorbent assay, the routine diagnostic procedure. Serum and saliva specimens were obtained from 50 healthy adults as additional controls. IgM was detected in the saliva of 65 of the 72 serum IgM-positive cases, 6 of the 75 serum IgM-negative cases, and none of the control group, resulting in a sensitivity of 90.3% and a specificity of 92.0% and demonstrating that salivary IgM is a useful diagnostic marker for DEN infection. Detection of IgA in serum may be another feasible alternative for the diagnosis of DEN infection, with serum IgA found in 68 (94.4%) of the IgM-positive cases. In contrast, detection of IgA in saliva was not found to be a useful tool for DEN diagnosis in the present study. Further studies of the kinetics of antibody detection in another set of 151 paired acute- and convalescent-phase serum samples showed that DEN-specific IgA antibodies were detected in more acute-phase samples than were IgM antibodies. Thus, we conclude that DEN-specific IgA in serum is a potential diagnostic target. Furthermore, given that saliva is a readily obtainable, noninvasive specimen, detection of DEN-specific salivary IgM should be considered a useful, cheaper diagnostic modality with similar sensitivity and specificity to IgM detection in serum.


2021 ◽  
Author(s):  
Feng Gao ◽  
Xiaolong Tu ◽  
Yongfang Yu ◽  
Yansha Gao ◽  
Jin Zou ◽  
...  

Abstract Herein, an efficient electrochemical sensing platform is proposed for selective and sensitive detection of nitrite on the basis of Cu@C@Zeolitic imidazolate framework-8 (Cu@C@ZIF-8) heterostructure. Core-shell Cu@C@ZIF-8 composite was synthesized by pyrolysis of Cu-metal-organic framework@ZIF-8 (Cu-MOF@ZIF-8) in Ar atmosphere on account of the difference of thermal stability between Cu-MOF and ZIF-8. For the sensing system of Cu@C@ZIF-8, ZIF-8 with proper pore size allows nitrite diffuse through the shell, while big molecules cannot, which ensures high selectivity of the sensor. On the other hand, Cu@C as electrocatalyst promotes the oxidation of nitrite, thereby resulting high sensitivity of the sensor. Accordingly, the Cu@C@ZIF-8 based sensor presents excellent performance for nitrite detection, which achieves a wide linear response range of 0.1 µM to 300.0 µM, and a low limit of detection (LOD) of 0.033 µM. In addition, the Cu@C@ZIF-8 sensor possesses excellent stability and reproducibility, and was employed to quantify nitrite in sausage samples with recoveries of 95.45-104.80%.


Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 347 ◽  
Author(s):  
Maria Chiriacò ◽  
Ilaria Parlangeli ◽  
Fausto Sirsi ◽  
Palmiro Poltronieri ◽  
Elisabetta Primiceri

A great improvement in food safety and quality controls worldwide has been achieved through the development of biosensing platforms. Foodborne pathogens continue to cause serious outbreaks, due to the ingestion of contaminated food. The development of new, sensitive, portable, high-throughput, and automated platforms is a primary objective to allow detection of pathogens and their toxins in foods. Listeria monocytogenes is one common foodborne pathogen. Major outbreaks of listeriosis have been caused by a variety of foods, including milk, soft cheeses, meat, fermented sausages, poultry, seafood and vegetable products. Due to its high sensitivity and easy setup, electrochemical impedance spectroscopy (EIS) has been extensively applied for biosensor fabrication and in particular in the field of microbiology as a mean to detect and quantify foodborne bacteria. Here we describe a miniaturized, portable EIS platform consisting of a microfluidic device with EIS sensors for the detection of L. monocytogenes in milk samples, connected to a portable impedance analyzer for on-field application in clinical and food diagnostics, but also for biosecurity purposes. To achieve this goal microelectrodes were functionalized with antibodies specific for L. monocytogenes. The binding and detection of L. monocytogenes was achieved in the range 2.2 × 103 cfu/mL to 1 × 102 with a Limit of Detection (LoD) of 5.5 cfu/mL.


2015 ◽  
Vol 781 ◽  
pp. 637-640
Author(s):  
Thitiwat Piyatamrong ◽  
Anan Kamolphanus ◽  
Gasydech Lergchinnaboot ◽  
Krittin Suphakarn ◽  
Chivalai Temiyasathit

Dengue virus (DENV) is one of the most widespread infectious diseases in the world, especially in the South East Asian regions. Transmitting the virus through mosquitoes, Dengue is an infectious viral borne disease. The virus sequences are assembled as series of nucleic acid, making the task of diagnosing virus sequences burdensome. Graphical representations are then proposed to represent Dengue virus to sustain the studies in virus sequences diagnosis. However, graphically representing sequences remained a crucified task especially for the incomplete genome sequences due to the missing nucleic acids. Although a number of studies provide methodologies on virus sequence visualization, in Dengue virus researches, those methodologies provide the visualization solely for complete genome sequences while neglecting the incomplete genome sequences. With the unaccommodating availabilities of research inputs, our study proposes a methodology for graphically representing the incomplete Dengue virus sequences, as well as complete virus sequences, by imputing in the incomplete part of a sequence with created reference sequences. The proposed methodology employs the use of database technology and majority voting technique to create reference sequences for each serotype of Dengue. Experimental results show that incomplete sequences are visualized realistically according to its respective serotype, thus providing flexibilities in Dengue virus researches to compensate incomplete sequences as inputs.


ACS Omega ◽  
2020 ◽  
Vol 5 (10) ◽  
pp. 5098-5104 ◽  
Author(s):  
Chunjie Zhang ◽  
Yang Su ◽  
Siyi Hu ◽  
Kai Jin ◽  
Yuhan Jie ◽  
...  

Author(s):  
Fei Liu ◽  
Anis N. Nordin ◽  
Fang Li ◽  
Ioana Voiculescu

Recently, there has been interest to develop biosensors based on live mammalian cells to monitor the toxicity of water. The cell viability after exposure to toxic water can be monitored by electric cell-substrate impedance sensing (ECIS) of the cell membrane. However, these impedance based toxicity sensors can only provide one single sensing endpoint (impedance measurement), and many toxicants cannot be detected at the concentration between Military Exposure Guideline levels and estimated Human Lethal Concentrations. The goal of this paper is to provide a rapid and sensitive sensing platform for long-term water toxicity detection. In this paper a novel multiparametric biosensor with integrated microfluidic channels for water toxicity detection is presented. Toxicity tests to study bovine aortic endothelial cells (BAECs) responsiveness to health-threatening concentrations of ammonia in de-ionized (DI) water will be presented. We demonstrated the BAECs can rapidly respond to ammonia concentrations between the military exposure guideline of 2mM and human lethal concentration of 55mM. The successful testing of water toxicity by simultaneous gravimetric and impedimetric measurements indicates that the multiparametric biosensor platform is able to perform rapid and sensitive detection of water toxicity and minimize the false-positive rate.


1999 ◽  
Vol 1 (13) ◽  
pp. 1085-1090 ◽  
Author(s):  
Jan Groen ◽  
Jans Velzing ◽  
Cederick Copra ◽  
Eddy Balentien ◽  
Vincent Deubel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document