Abilities and limitations of thermal mass activation for thermal comfort, peak shifting and shaving: A review

2017 ◽  
Vol 118 ◽  
pp. 113-127 ◽  
Author(s):  
Dave Olsthoorn ◽  
Fariborz Haghighat ◽  
Alain Moreau ◽  
Gino Lacroix
Keyword(s):  
Author(s):  
Lingjiang Huang ◽  
Jian Kang

AbstractThe solar incidence on an indoor environment and its occupants has significant impacts on indoor thermal comfort. It can bring favorable passive solar heating and can result in undesired overheating (even in winter). This problem becomes more critical for high altitudes with high intensity of solar irradiance, while received limited attention. In this study, we explored the specific overheating and rising thermal discomfort in winter in Lhasa as a typical location of a cold climate at high altitudes. First, we evaluated the thermal comfort incorporating solar radiation effect in winter by field measurements. Subsequently, we investigated local occupant adaptive responses (considering the impact of direct solar irradiance). This was followed by a simulation study of assessment of annual based thermal comfort and the effect on energy-saving potential by current solar adjustment. Finally, we discussed winter shading design for high altitudes for both solar shading and passive solar use at high altitudes, and evaluated thermal mass shading with solar louvers in terms of indoor environment control. The results reveal that considerable indoor overheating occurs during the whole winter season instead of summer in Lhasa, with over two-thirds of daytime beyond the comfort range. Further, various adaptive behaviors are adopted by occupants in response to overheating due to the solar radiation. Moreover, it is found that the energy-saving potential might be overestimated by 1.9 times with current window to wall ratio requirements in local design standards and building codes due to the thermal adaption by drawing curtains. The developed thermal mass shading is efficient in achieving an improved indoor thermal environment by reducing overheating time to an average of 62.2% during the winter and a corresponding increase of comfort time.


2020 ◽  
Vol 12 (22) ◽  
pp. 9672
Author(s):  
Mamdooh Alwetaishi ◽  
Ashraf Balabel ◽  
Ahmed Abdelhafiz ◽  
Usama Issa ◽  
Ibrahim Sharaky ◽  
...  

The study investigated the level of thermal comfort in historical buildings located at a relatively high altitude in the Arabian Desert of Saudi Arabia. The study focused on the impact of the use of thermal mass and orientation on the level of thermal performance at Shubra and Boqri Palaces. Qualitative and quantitative analyses were used in this study, including a questionnaire interview with architecture experts living at the relatively high altitude of Taif city, to obtain data and information from local experts. The computer software TAS EDSL was used along with on-site equipment, such as thermal imaging cameras and data loggers, to observe the physical conditions of the building in terms of its thermal performance. The study revealed that the experts’ age and years of experience were important aspects while collecting data from them during the survey. The use of thermal mass had a slight impact on the indoor air temperature as well as the energy consumption, but it helped in providing thermal comfort. Use of ventilation can improve thermal comfort level. Evaporative cooling technique has a considerable impact on reducing indoor air temperature with 4 °C drop, improving the thermal comfort sensation level. The novelty of this work is that, it links the outcomes of qualitative results of experts with field monitoring as well as computer modelling. This can contribute as method to accurately collect data in similar case studies.


2016 ◽  
Vol 30 (1) ◽  
pp. 04015002 ◽  
Author(s):  
Vanessa Stevens ◽  
Martin Kotol ◽  
Bruno Grunau ◽  
Colin Craven

2019 ◽  
Vol 22 (1) ◽  
Author(s):  
Martín Wieser-Rey ◽  
Silvia Onnis ◽  
Giuseppina Meli

Resumen Las soluciones constructivas tradicionales y contemporáneas han demostrado tener serias limitaciones en la solución del déficit cualitativo y cuantitativo de la vivienda y el equipamiento, de igual manera, las evidencias del desempeño térmico son igualmente desalentadoras. Es por lo que se indaga sobre la capacidad de la tierra alivianada de brindar confort térmico en los edificios, considerando los diferentes climas del territorio peruano y comparándola con los sistemas constructivos más comunes en el medio: el adobe y la albañilería de ladrillo. A partir de la caracterización previa de las cualidades térmicas de los componentes y de la realización de simulaciones térmicas dinámicas, comparando el desempeño de diferentes prototipos digitales, se identificaron las virtudes de la tierra alivianada por el marcado equilibrio entre una masa térmica media y una conductividad térmica relativamente baja, siendo los únicos que logran cumplir con las exigencias de la actual norma peruana de eficiencia energética para el caso de los climas más fríos. Adicionalmente de destaca la composición a partir de materiales naturales, renovables y biodegradables que son ventajas ecológicas. Palabras clave: arquitectura bioclimática; arquitectura sostenible; climatización pasiva; confort térmico; inercia térmica; simulación térmica; sistema constructivo; transmitancia térmica   Abstract Traditional and contemporary construction systems have shown serious limitations in the solution of the qualitative and quantitative deficit of housing and equipment, in the same way, the evidence of thermal performance is equally discouraging. That is why we inquire about the ability of the land relieved to provide thermal comfort in buildings, considering the different climates of the Peruvian territory and comparing it with the most common construction systems in the environment: adobe and brick masonry. From the previous characterization of the thermal qualities of the components and the realization of dynamic thermal simulations, comparing the performance of different digital prototypes, the virtues of the earth alleviated by the marked balance between a medium thermal mass and a conductivity were identified relatively low thermal, being the only ones that manage to meet the requirements of the current Peruvian energy efficiency standard in the case of colder climates. In addition, the composition from natural, renewable and biodegradable materials that are ecological advantages stands out. Keywords: bioclimatic architecture; sustainable architecture; passive air conditioning; Thermal comfort; thermal inertia; thermal simulation; construction system; thermal transmittance.   Recibido: febrero 25 / 2019  Evaluado: septiembre 20 / 2019  Aceptado: noviembre 23 / 2019 Publicado en línea: noviembre de 2019                               Actualizado: noviembre de 2019  


2022 ◽  
Vol 27 ◽  
pp. 932-944
Author(s):  
Ibtissame Benoudjafer

Abstract. Practice social of people is the key to produce space and give a possibility to maintain thermal comfort and energy efficiency. The main objective of this research is to adapt the traditional strategies in the architecture actual, to achieved a thermal comfort and improve on reducing cooling load through the using of vernacular gait. Today, it is necessary to practice these systems in the current or conventional architecture of household. The study is especially for arid cities namely the region of Saoura, in the hot and dry climatic zone in Algeria, considered for this study. Two main factors is considered such as design and urban where taken into account in order to select the appropriate and specific passive cooling strategy. The results show that the passive cooling strategy of courtyard would be appropriate for arid regions, however a high thermal mass would be suitable for construction. In conclusion, this work made it possible to choose a suitable passive cooling strategy for all types of construction in hot and dry climates. Finally, this paper puts forward a set of recommendations to improve the passive design of future buildings in hot and arid climates.  


2022 ◽  
Vol 7 ◽  
pp. 1
Author(s):  
Andrés Vilaboa Díaz ◽  
Pastora M. Bello Bugallo

Buildings are one of the systems that more energy consumed in the European Union. The study of the thermal envelope is interesting in order to reduce the energy losses. For that, a mathematical model able to predict the system response to external temperature variations is developed. With the mathematical model, different thermal envelope elements of a building based on the lag and the cushioning of the resultant wave can be characterized. In addition, it is important to analyse where the insulation is placed, because when the insulation is outside and the thermal mass is inside, the system produces a response with smooth temperature variations than when the insulation is inside. Therefore, placing the outside insulation generates more steady indoor temperatures, increasing the thermal comfort inside the building. To complete the mathematical model that allows predicting the temperature inside a building taking into account the solar inputs and the thermal inertia of the building. This study will help to establish the optimum design parameters in order to build sustainable and comfortable buildings. Furthermore, it will take one step forward in the construction of nearly Zero-Energy Buildings.


Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4159 ◽  
Author(s):  
Hossein Bakhtiari ◽  
Jan Akander ◽  
Mathias Cehlin ◽  
Abolfazl Hayati

The effect of mechanical night ventilation on thermal comfort and electricity use for cooling of a typical historic office building in north-central Sweden was assessed. IDA-ICE simulation program was used to model the potential for improving thermal comfort and electricity savings by applying night ventilation cooling. Parametric study comprised different outdoor climates, flow rates, cooling machine’s coefficient of performance and ventilation units’ specific fan power values. Additionally, the effect of different door schemes (open or closed) on thermal comfort in offices was investigated. It was shown that night ventilation cannot meet the building’s total cooling demand and auxiliary active cooling is required, although the building is located in a cold climate. Night ventilation had the potential in decreasing the percentage of exceedance hours in offices by up to 33% and decreasing the total electricity use for cooling by up to 40%. More electricity is saved with higher night ventilation rates. There is, however, a maximum beneficial ventilation rate above which the increase in electricity use in fans outweighs the decrease in electricity use in cooling machine. It depends on thermal mass capacity of the building, cooling machine´s coefficient of performance, design ventilation rate, and available night ventilation cooling potential (ambient air temperature).


2011 ◽  
Vol 224 ◽  
pp. 115-119 ◽  
Author(s):  
Ismail Muhammad Azzam ◽  
Abdul Rashid Fahanim

Achieving thermal comfort in the tropical climate of Malaysia is always a great challenge for any house designer or builder. Although some practical solutions have been developed over centuries through the slow but constant evolution of indigenous houses such the Malay house, the longhouses in Borneo and the Chinese townhouses in Melaka, their integration into contemporary designs have been hampered by various modern constraints. For instance, building the Malay house in urban areas is deemed unsuitable due to the need for wide land lots and their perceptively fragile building materials that do not allay any security worries. The lack of skilled carpenters for building such a house is also a worsening problem. Hence, new and innovative strategies to achieve thermal comfort for contemporary houses are greatly needed to serve the needs and expectations of an urbanized society. One method that has been studied and proved successful is the Smart and Cool Home system which was first used at a private bungalow in Semenyih, Malaysia. The overarching principle of this system is to reverse the role of the building envelope from being a thermal mass into a heat sink which effectively reduces heat gains and allow the occupants inside to easily adapt to a milder indoor environment. This paper describes this house in detail and provides some understanding of the principles involved.


Sign in / Sign up

Export Citation Format

Share Document