Constant Winding Angle Curve on Revolution Surface and Its Application

2021 ◽  
pp. 103160
Author(s):  
Haisheng Li ◽  
Mingkun Li
Keyword(s):  
2021 ◽  
Vol 16 ◽  
pp. 155892502199081
Author(s):  
Guo-min Xu ◽  
Chang-geng Shuai

Fiber-reinforced flexible pipes are widely used to transport the fluid at locations requiring flexible connection in pipeline systems. It is important to predict the burst pressure to guarantee the reliability of the flexible pipes. Based on the composite shell theory and the transfer-matrix method, the burst pressure of flexible pipes with arbitrary generatrix under internal pressure is investigated. Firstly, a novel method is proposed to simplify the theoretical derivation of the transfer matrix by solving symbolic linear equations. The method is accurate and much faster than the manual derivation of the transfer matrix. The anisotropy dependency on the circumferential radius of the pipe is considered in the theoretical approach, along with the nonlinear stretch of the unidirectional fabric in the reinforced layer. Secondly, the burst pressure is predicted with the Tsai-Hill failure criterion and verified by burst tests of six different prototypes of the flexible pipe. It is found that the burst pressure is increased significantly with an optimal winding angle of the unidirectional fabric. The optimal result is determined by the geometric parameters of the pipe. The investigation method and results presented in this paper will guide the design and optimization of novel fiber-reinforced flexible pipes.


2015 ◽  
Vol 22 (4) ◽  
pp. 666-682 ◽  
Author(s):  
Hasan Demirkoparan ◽  
Jose Merodio

In this paper, we examine the influence of swelling on the bulging bifurcation of inflated thin-walled cylinders under axial loading. We provide the bifurcation criteria for a membrane cylinder subjected to combined axial loading, internal pressure and swelling. We focus here on orthotropic materials with two preferred directions which are mechanically equivalent and are symmetrically disposed. Arterial wall tissue is modeled with this class of constitutive equation and the onset of bulging is considered to give aneurysm formation. It is shown that swelling may lead to compressive hoop stresses near the inner radius of the tube, which could have a potential benefit for preventing aneurysm formation. The effects of the axial stretch, the strength of the fiber reinforcement and the fiber winding angle on the onset of bifurcation are investigated. Finally, a boundary value problem is studied to show the robustness of the results.


2021 ◽  
Vol 229 ◽  
pp. 111660
Author(s):  
Luigi Mario Viespoli ◽  
Luigi Panza ◽  
Audun Johanson ◽  
Antonio Alvaro ◽  
Aurelio Somà ◽  
...  

2021 ◽  
Author(s):  
Heping Xia ◽  
Chen Shi ◽  
Jialu Wang ◽  
Xingxian Bao ◽  
Hongwei Li ◽  
...  

2021 ◽  
pp. 002199832110492
Author(s):  
Ruidong Man ◽  
Jianhui Fu ◽  
Songkil Kim ◽  
Yoongho Jung

As a connecting component of tubes, the elbow is indispensable to pipe-fitting in composite products. Previous studies have addressed methods for generating winding paths based on parametric equations on the elbow. However, these methods are unsuitable for elbows whose surfaces are difficult to describe using mathematical expressions. In this study, a geometric method was proposed for generating winding patterns for various elbow types. With this method, the mandrel surface is first converted into uniform and high-quality quadrilateral elements; an algorithm is then provided for calculating the minimum winding angle for bridging-free. Next, an angle for non-bridging was defined as the design-winding angle to generate the uniform and slippage-free basic winding paths on the quadrilateral elements in non-geodesic directions. Finally, after a series of uniform points were calculated on the selected vertical edge according to the elbow type, the pattern paths were generated with the uniform points and basic paths. The proposed method is advantageously not limited to the elbow’s shape.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2449 ◽  
Author(s):  
Amin Zaami ◽  
Ismet Baran ◽  
Ton C. Bor ◽  
Remko Akkerman

Advanced thermoplastic composites manufacturing using laser assisted tape placement or winding (LATP/LATW) is a challenging task as monitoring and predicting nip point (bonding) temperature are difficult especially on curved surfaces. A comprehensive numerical analysis of the heat flux and temperature distribution near the nip point is carried out in this paper for helical winding of fiber reinforced thermoplastic tapes on a cylindrically shaped mandrel. An optical ray-tracing technique is coupled with a numerical heat transfer model in the process simulation tool. The developed optical-thermal model predictions were compared with experimental data available in literature to validate its effectiveness. The influences of winding/placement angle, mandrel curvature and tape width on the incident angles, the laser absorbed intensity, and the process temperature distribution are studied extensively using the validated model. Winding/placement angle has a considerable effect on the temperature distribution. Increase in winding angle results in a higher temperature for tape due to more reflections coming from the substrate. On the other hand, substrate temperature decreases as the winding angle increases due to a decrease in the laser incident angles based on the local surface curvature. An increase in mandrel curvature results in higher nip point temperatures for substrate and lower one for tape. Different mandrel sizes for 90 ° placement path do not have a strong effect on the substrate process temperature as for other winding angles because of less curvature change of the corresponding irradiated area. Tape width causes local temperature variations at the edges of the tape/substrate. In order to obtain the desired process temeprature during LATW or LATP processes, the laser intensity distribution on the tape and substrate surfaces should be regulated.


1982 ◽  
Vol 49 (4) ◽  
pp. 843-848 ◽  
Author(s):  
J. B. Greenberg ◽  
Y. Stavsky

A general method of solution, based on a complex finite Fourier transform, is adopted for the stability and vibration analysis of compressed, aeolotropic, composite cylindrical shells. A major feature of the solution method is its ability to handle both uniform and nonuniform conditions that hold at the boundaries of finite-length cylindrical shells. For the various shells investigated, an optimum winding angle was found for which a maximum frequency response and highest critical buckling load is attainable. Similar optimization was also discovered to be possible by controlling both/either shell heterogeneity and/or fiber orientation.


Sign in / Sign up

Export Citation Format

Share Document