Development of a colorimetric pH indicator based on bacterial cellulose nanofibers and red cabbage ( Brassica oleraceae ) extract

2017 ◽  
Vol 156 ◽  
pp. 193-201 ◽  
Author(s):  
Simin Pourjavaher ◽  
Hadi Almasi ◽  
Saeed Meshkini ◽  
Sajad Pirsa ◽  
Ehsan Parandi
Cellulose ◽  
2021 ◽  
Author(s):  
Katri S. Kontturi ◽  
Koon-Yang Lee ◽  
Mitchell P. Jones ◽  
William W. Sampson ◽  
Alexander Bismarck ◽  
...  

Abstract Cellulose nanopapers provide diverse, strong and lightweight templates prepared entirely from sustainable raw materials, cellulose nanofibers (CNFs). Yet the strength of CNFs has not been fully capitalized in the resulting nanopapers and the relative influence of CNF strength, their bonding, and biological origin to nanopaper strength are unknown. Here, we show that basic principles from paper physics can be applied to CNF nanopapers to illuminate those relationships. Importantly, it appeared that ~ 200 MPa was the theoretical maximum for nanopapers with random fibril orientation. Furthermore, we demonstrate the contrast in tensile strength for nanopapers prepared from bacterial cellulose (BC) and wood-based nanofibrillated cellulose (NFC). Endemic amorphous polysaccharides (hemicelluloses) in NFC act as matrix in NFC nanopapers, strengthening the bonding between CNFs just like it improves the bonding between CNFs in the primary cell wall of plants. The conclusions apply to all composites containing non-woven fiber mats as reinforcement. Graphic abstract


2007 ◽  
Vol 8 (6) ◽  
pp. 1973-1978 ◽  
Author(s):  
Shinsuke Ifuku ◽  
Masaya Nogi ◽  
Kentaro Abe ◽  
Keishin Handa ◽  
Fumiaki Nakatsubo ◽  
...  

LWT ◽  
2015 ◽  
Vol 61 (1) ◽  
pp. 258-262 ◽  
Author(s):  
Mayra Cristina Silva-Pereira ◽  
José Augusto Teixeira ◽  
Valdir Aniceto Pereira-Júnior ◽  
Ricardo Stefani

2013 ◽  
Vol 43 ◽  
pp. 732-737 ◽  
Author(s):  
Hossein Yousefi ◽  
Mehdi Faezipour ◽  
Sahab Hedjazi ◽  
Mohammad Mazhari Mousavi ◽  
Yoshio Azusa ◽  
...  

2020 ◽  
Vol 33 (8) ◽  
pp. 321-332 ◽  
Author(s):  
Bambang Kuswandi ◽  
Ni P.N. Asih ◽  
Dwi K. Pratoko ◽  
Nia Kristiningrum ◽  
Mehran Moradi

Nanomaterials ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1912
Author(s):  
Zheng Li ◽  
Yaogang Wang ◽  
Wen Xia ◽  
Jixian Gong ◽  
Shiru Jia ◽  
...  

Heteroatom doping is an effective way to raise the electrochemical properties of carbon materials. In this paper, a novel electrode material including nitrogen, phosphorus, and sulfur co-doped pyrolyzed bacterial cellulose (N/P/S-PBC) nanofibers was produced. The morphologies, structure characteristics and electrochemical performances of the materials were investigated by Scanning electron microscopy, Fourier transform infrared spectra, X-ray diffraction patterns, X-ray photoelectronic spectroscopy, N2 sorption analysis and electrochemical measurements. When 3.9 atom% of nitrogen, 1.22 atom% of phosphorus and 0.6 atom% of sulfur co-doped into PBC, the specific capacitance of N/P/S-PBC at 1.0 A/g was 255 F/g and the N/P/S-PBC supercapacitors’ energy density at 1 A/g was 8.48 Wh/kg with a power density of 489.45 W/kg, which were better than those of the N/P-PBC and N/S-PBC supercapacitors. This material may be a very good candidate as the promising electrode materials for high-performance supercapacitors.


2014 ◽  
Vol 101 ◽  
pp. 1-10 ◽  
Author(s):  
Jen-taut Yeh ◽  
Chih-Chen Tsai ◽  
Chuen-Kai Wang ◽  
Jhih-Wun Shao ◽  
Ming-Zheng Xiao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document