scholarly journals Thermal conductivity, structure and mechanical properties of konjac glucomannan/starch based aerogel strengthened by wheat straw

2018 ◽  
Vol 197 ◽  
pp. 284-291 ◽  
Author(s):  
Yixin Wang ◽  
Kao Wu ◽  
Man Xiao ◽  
Saffa B. Riffat ◽  
Yuehong Su ◽  
...  
Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1199 ◽  
Author(s):  
Marie Viel ◽  
Florence Collet ◽  
Sylvie Prétot ◽  
Christophe Lanos

In order to meet the requirement of sustainable development, building materials are increasingly environmentally friendly. They can be partially or fully bio-based or recycled. This paper looks at the development of fully bio-based composites where agro-resources are valued as bio-based aggregates (hemp) and as binding materials (wheat). In a previous work, a feasibility study simultaneously investigated the processing and ratio of wheat straw required to ensure a gluing effect. In this paper, three kinds of hemp-straw composites are selected and compared with a hemp-polysaccharides composite. The gluing effect is analyzed chemically and via SEM. The developed composites were characterized multi-physically. They showed sufficiently high mechanical properties to be used as insulating materials. Furthermore, they showed good thermal performances with a low thermal conductivity (67.9–69.0 mW/(m · K) at 23 ° C, dry).


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 258
Author(s):  
Ying Kuang ◽  
Lijun Chen ◽  
Junjun Zhai ◽  
Si Zhao ◽  
Qinjian Xiao ◽  
...  

With abundant renewable resources and good biodegradability, bio-based aerogels are considered as promising insulating materials for replacing the conventional petroleum-based foam. In this study, konjac glucomannan (KGM)-based aerogels were prepared as thermal insulation materials via a convenient sol–gel and freeze-drying progress with different content of plant polysaccharides, proteins, and wheat straw. The morphology, thermal conductivity, and flame retardancy of KGM-based aerogels were determined. The KGM-based aerogels showed a uniform three-dimensional porous microstructure. The addition of wheat straw could significantly reduce the pore size of aerogels due to its special multi-cavity structure. KGM-based aerogels showed low densities (0.0234–0.0559 g/cm−3), low thermal conductivities (0.04573–0.05127 W/mK), low peak heat release rate (PHRR, 46.7–165.5 W/g), and low total heat release (THR, 5.7–16.2 kJ/g). Compared to the conventional expanded polystyrene (EPS) and polyurethane (PU) foam, the maximum limiting oxygen index (LOI) of KGM-based aerogels increased by 24.09% and 47.59%, the lowest PHRR decreased by 79.37% and 94.26%, and the lowest THR decreased by 76.54% and 89.25%, respectively. The results demonstrated that the KGM-based aerogels had better performance on flame retardancy than PU and EPS, indicating high potential applications as heat insulation in the green advanced engineering field.


2017 ◽  
Vol 14 (3) ◽  
pp. 335-343 ◽  
Author(s):  
Yixin Wang ◽  
Xi Chen ◽  
Ying Kuang ◽  
Man Xiao ◽  
Yuehong Su ◽  
...  

Abstract This study presents the preparation and measurement of a novel environmentally friendly konjac glucomannan (KGM)-based composite aerogels enhanced with wheat straw (WS) via a sol–gel and freeze-drying progress. With the addition of WS, the porosity of aerogels could be increased from 50 to 88.13%, the filtration resistance of aerogels could be reduced from 500 to 205 Pa, and the filtration efficiency could be improved to 90.38%. The addition of WS also enhances the mechanical properties of composite aerogels with compression modulus of 2000.66 Pa, compressive strength of 501.56 Pa and elasticity of 0.603. The results demonstrate the high potential of KGM-based composite aerogels enhanced with WS for applications in air filtering.


2015 ◽  
Vol 10 (2) ◽  
pp. 2663-2681
Author(s):  
Rizk El- Sayed ◽  
Mustafa Kamal ◽  
Abu-Bakr El-Bediwi ◽  
Qutaiba Rasheed Solaiman

The structure of a series of AlSb alloys prepared by melt spinning have been studied in the as melt–spun ribbons  as a function of antimony content .The stability  of these structures has  been  related to that of the transport and mechanical properties of the alloy ribbons. Microstructural analysis was performed and it was found that only Al and AlSb phases formed for different composition.  The electrical, thermal and the stability of the mechanical properties are related indirectly through the influence of the antimony content. The results are interpreted in terms of the phase change occurring to alloy system. Electrical resistivity, thermal conductivity, elastic moduli and the values of microhardness are found to be more sensitive than the internal friction to the phase changes. 


2020 ◽  
Vol 38 (10A) ◽  
pp. 1522-1530
Author(s):  
Rawnaq S. Mahdi ◽  
Aseel B. AL-Zubidi ◽  
Hassan N. Hashim

This work reports on the incorporation of Flint and Kaolin rocks powders in the cement mortar in an attempt to improve its mechanical properties and produce an eco-friendly mortar. Flint and Kaolin powders are prepared by dry mechanical milling. The two powders are added separately to the mortars substituting cement partially. The two powders are found to improve the mechanical properties of the mortars. Hardness and compressive strength are found to increase with the increase of powders constituents in the cement mortars. In addition, the two powders affect water absorption and thermal conductivity of the mortar specimens which are desirable for construction applications. Kaolin is found to have a greater effect on the mechanical properties, water absorption, and thermal conductivity of the mortars than Flint. This behavior is discussed and analyzed based on the compositional and structural properties of the rocks powders.


2020 ◽  
Vol 38 (3B) ◽  
pp. 104-114
Author(s):  
Samah M. Hussein

This research has been done by reinforcing the matrix (unsaturated polyester) resin with natural material (date palm fiber (DPF)). The fibers were exposure to alkali treatment before reinforcement. The samples have been prepared by using hand lay-up technique with fiber volume fraction of (10%, 20% and 30%). After preparation of the mechanical and physical properties have been studied such as, compression, flexural, impact strength, thermal conductivity, Dielectric constant and dielectric strength. The polyester composite reinforced with date palm fiber at volume fraction (10% and 20%) has good mechanical properties rather than pure unsaturated polyester material, while the composite reinforced with 30% Vf present poor mechanical properties. Thermal conductivity results indicated insulator composite behavior. The effect of present fiber polar group induces of decreasing in dielectric strength, and increasing dielectric constant. The reinforcement composite 20% Vf showed the best results in mechanical, thermal and electrical properties.


Alloy Digest ◽  
1983 ◽  
Vol 32 (3) ◽  

Abstract BRUSH Alloy 3 offers the highest electrical and thermal conductivity of any beryllium-copper alloy. It possesses an excellent combination of moderate strength, good corrosion resistance and good resistance to moderately elevated temperatures. Because of its unique physical and mechanical properties, Brush Alloy 3 finds widespread use in welding applications (RWMA Class 3), current-carrying springs, switch and instrument parts and similar components. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fatigue. It also includes information on corrosion resistance as well as casting, forming, heat treating, machining, joining, and surface treatment. Filing Code: Cu-454. Producer or source: Brush Wellman Inc..


Alloy Digest ◽  
1988 ◽  
Vol 37 (9) ◽  

Abstract 850.0 ALUMINUM Alloy can be considered the general purpose light metal bearing alloy. Its good thermal conductivity keeps operating temperatures low. It has high ductility. In many applications it has been found to be superior to steel backed bearings. 852.0 ALUMINUM Alloy has higher mechanical properties making it suitable for heavier load and higher temperature applications. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength. It also includes information on corrosion resistance as well as heat treating and machining. Filing Code: Al-290. Producer or source: Federated Bronze Products Inc..


Sign in / Sign up

Export Citation Format

Share Document