The critical role of the Arabidopsis circadian clock at high temperature

Author(s):  
N. Costa ◽  
J. Hartwell ◽  
A. Hall
2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Richard P. Oleksak ◽  
Rafik Addou ◽  
Bharat Gwalani ◽  
John P. Baltrus ◽  
Tao Liu ◽  
...  

AbstractCurrent and future power systems require chromia-forming alloys compatible with high-temperature CO2. Important questions concerning the mechanisms of oxidation and carburization remain unanswered. Herein we shed light onto these processes by studying the very initial stages of oxidation of Fe22Cr and Fe22Ni22Cr model alloys. Ambient-pressure X-ray photoelectron spectroscopy enabled in situ analysis of the oxidizing surface under 1 mbar of flowing CO2 at temperatures up to 530 °C, while postexposure analyses revealed the structure and composition of the oxidized surface at the near-atomic scale. We found that gas purity played a critical role in the kinetics of the reaction, where high purity CO2 promoted the deposition of carbon and the selective oxidation of Cr. In contrast, no carbon deposition occurred in low purity CO2 and Fe oxidation ensued, thus highlighting the critical role of impurities in defining the early oxidation pathway of the alloy. The Cr-rich oxide formed on Fe22Cr in high purity CO2 was both thicker and more permeable to carbon compared to that formed on Fe22Ni22Cr, where carbon transport appeared to occur by atomic diffusion through the oxide. Alternatively, the Fe-rich oxide formed in low purity CO2 suggested carbon transport by molecular CO2.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Yanke Lin ◽  
Shuai Wang ◽  
Ziyue Zhou ◽  
Lianxia Guo ◽  
Fangjun Yu ◽  
...  

Abstract Metabolism is a major defense mechanism of the body against xenobiotic threats. Here we unravel a critical role of Bmal1 for circadian clock-controlled Cyp3a11 expression and xenobiotic metabolism. Bmal1 deficiency decreases the mRNA, protein and microsomal activity of Cyp3a11, and blunts their circadian rhythms in mice. A screen for Cyp3a11 regulators identifies two circadian genes Dbp and Hnf4α as potential regulatory mediators. Cell-based experiments confirm that Dbp and Hnf4α activate Cyp3a11 transcription by their binding to a D-box and a DR1 element in the Cyp3a11 promoter, respectively. Bmal1 binds to the P1 distal promoter to regulate Hnf4α transcriptionally. Cellular regulation of Cyp3a11 by Bmal1 is Dbp- and Hnf4α-dependent. Bmal1 deficiency sensitizes mice to toxicities of drugs such as aconitine and triptolide (and blunts circadian toxicity rhythmicities) due to elevated drug exposure. In summary, Bmal1 connects circadian clock and Cyp3a11 metabolism, thereby impacting drug detoxification as a function of daily time.


2019 ◽  
Author(s):  
Xiangyu Yao ◽  
Shihoko Kojima ◽  
Jing Chen

AbstractThe mammalian circadian clock is deeply rooted in rhythmic regulation of gene expression. Rhythmic transcriptional control mediated by the circadian transcription factors is thought to be the main driver of mammalian circadian gene expression. However, mounting evidence has demonstrated the importance of rhythmic post-transcriptional controls, and it remains unclear how the transcriptional and post-transcriptional mechanisms collectively control rhythmic gene expression. A recent study discovered rhythmicity in poly(A) tail length in mouse liver and its strong correlation with protein expression rhythms. To understand the role of rhythmic poly(A) regulation in circadian gene expression, we constructed a parsimonious model that depicts rhythmic control imposed upon basic mRNA expression and poly(A) regulation processes, including transcription, deadenylation, polyadenylation, and degradation. The model results reveal the rhythmicity in deadenylation as the strongest contributor to the rhythmicity in poly(A) tail length and the rhythmicity in the abundance of the mRNA subpopulation with long poly(A) tails (a rough proxy for mRNA translatability). In line with this finding, the model further shows that the experimentally observed distinct peak phases in the expression of deadenylases, regardless of other rhythmic controls, can robustly group the rhythmic mRNAs by their peak phases in poly(A) tail length and in abundance of the subpopulation with long poly(A) tails. This provides a potential mechanism to synchronize the phases of target gene expression regulated by the same deadenylases. Our findings highlight the critical role of rhythmic deadenylation in regulating poly(A) rhythms and circadian gene expression.Author SummaryThe biological circadian clock regulates various bodily functions such that they anticipate and respond to the day-and-night cycle. To achieve this, the circadian clock controls rhythmic gene expression, and these genes ultimately drive the rhythmicity of downstream biological processes. As a mechanism of driving circadian gene expression, rhythmic transcriptional control has attracted the central focus. However, mounting evidence has also demonstrated the importance of rhythmic post-transcriptional controls. Here we use mathematical modeling to investigate how transcriptional and post-transcriptional rhythms coordinately control rhythmic gene expression. We have particularly focused on rhythmic regulation of the length of poly(A) tail, a nearly universal feature of mRNAs that controls mRNA stability and translation. Our model reveals that the rhythmicity of deadenylation, the process that shortens the poly(A) tail, is the dominant contributor to the rhythmicity in poly(A) tail length and mRNA translatability. Particularly, the phase of deadenylation nearly overrides the other rhythmic processes in controlling the phases of poly(A) tail length and mRNA translatability. Our finding highlights the critical role of rhythmic deadenylation in circadian gene expression control.


Author(s):  
Rafikul Ali Saha ◽  
Anita Halder ◽  
Desheng Fu ◽  
Mitsuru Itoh ◽  
Tanusri Saha-Dasgupta ◽  
...  

2013 ◽  
Vol 304 (12) ◽  
pp. R1053-R1064 ◽  
Author(s):  
Jacob Richards ◽  
Michelle L. Gumz

It has been well established that the circadian clock plays a crucial role in the regulation of almost every physiological process. It also plays a critical role in pathophysiological states including those of obesity and diabetes. Recent evidence has highlighted the potential for targeting the circadian clock as a potential drug target. New studies have also demonstrated the existence of “clock-independent effects” of the circadian proteins, leading to exciting new avenues of research in the circadian clock field in physiology. The goal of this review is to provide an introduction to and overview of the circadian clock in physiology, including mechanisms, targets, and role in disease states. The role of the circadian clocks in the regulation of the cardiovascular system, renal function, metabolism, the endocrine system, immune, and reproductive systems will be discussed.


2020 ◽  
Vol 216 ◽  
pp. 280-292 ◽  
Author(s):  
Xiaorui Dong ◽  
Erik Ninnemann ◽  
Duminda S. Ranasinghe ◽  
Andrew Laich ◽  
Robert Greene ◽  
...  

2019 ◽  
Vol 34 (6) ◽  
pp. 610-621 ◽  
Author(s):  
Tsedey Mekbib ◽  
Ting-Chung Suen ◽  
Aisha Rollins-Hairston ◽  
Jason P. DeBruyne

The time-dependent degradation of core circadian clock proteins is essential for the proper functioning of circadian timekeeping mechanisms that drive daily rhythms in gene expression and, ultimately, an organism’s physiology. The ubiquitin proteasome system plays a critical role in regulating the stability of most proteins, including the core clock components. Our laboratory developed a cell-based functional screen to identify ubiquitin ligases that degrade any protein of interest and have started screening for those ligases that degrade circadian clock proteins. This screen identified Spsb4 as a putative novel E3 ligase for RevErbα. In this article, we further investigate the role of Spsb4 and its paralogs in RevErbα stability and circadian rhythmicity. Our results indicate that the paralogs Spsb1 and Spsb4, but not Spsb2 and Spsb3, can interact with and facilitate RevErbα ubiquitination and degradation and regulate circadian clock periodicity.


1988 ◽  
Vol 133 ◽  
Author(s):  
O. M. Nicholson ◽  
G. M. Stocks ◽  
W. M. Temmerman ◽  
P. Sterne ◽  
D. G. Pettifor

ABSTRACTAt stoichiometry, DO22 is the observed ground state of Al2Ti and has a C/A ratio of 2.23, but as a function of both concentration and temperature other ordered arrangements of APB's are observed. These phase transitions have sparked many studies in which the energy has been treated as that of chemical rearrangement on an fcc lattice. We have found that at the ideal C/A ratio, the Ll2 structure is lower in energy, but as the tetragonal distortion increases the DO22 energy drops below that of Ll2. The critical role played by the tetragonal distortion in the balance between Ll2 and DO22 energies precludes the use of any model based on the undistorted lattice.The major impediment to the development of Al3Ti as a high-temperature material is its lack of ductility. The standard approach is to make alloy additions which transform the structure to Ll2. An alternate approach is to work toward the enhancement of ductility in the DO22 phase. As a first step we have calculated the twinning energy in Al3Ti.


Langmuir ◽  
1996 ◽  
Vol 12 (11) ◽  
pp. 2622-2624 ◽  
Author(s):  
Kaimin Chen ◽  
Feng Xu ◽  
Chad A. Mirkin ◽  
Rung-Kuang Lo ◽  
K. S. Nanjundaswamy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document