scholarly journals Regional specialization and fate specification of bone stromal cells in skeletal development

Cell Reports ◽  
2021 ◽  
Vol 36 (2) ◽  
pp. 109352
Author(s):  
Kishor K. Sivaraj ◽  
Hyun-Woo Jeong ◽  
Backialakshmi Dharmalingam ◽  
Dagmar Zeuschner ◽  
Susanne Adams ◽  
...  
eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Vera D Rinaldi ◽  
Elisa Donnard ◽  
Kyle Gellatly ◽  
Morten Rasmussen ◽  
Alper Kucukural ◽  
...  

Following testicular spermatogenesis, mammalian sperm continue to mature in a long epithelial tube known as the epididymis, which plays key roles in remodeling sperm protein, lipid, and RNA composition. To understand the roles for the epididymis in reproductive biology, we generated a single-cell atlas of the murine epididymis and vas deferens. We recovered key epithelial cell types including principal cells, clear cells, and basal cells, along with associated support cells that include fibroblasts, smooth muscle, macrophages and other immune cells. Moreover, our data illuminate extensive regional specialization of principal cell populations across the length of the epididymis. In addition to region-specific specialization of principal cells, we find evidence for functionally specialized subpopulations of stromal cells, and, most notably, two distinct populations of clear cells. Our dataset extends on existing knowledge of epididymal biology, and provides a wealth of information on potential regulatory and signaling factors that bear future investigation.


2021 ◽  
Vol 22 (13) ◽  
pp. 6651
Author(s):  
Marco Ponzetti ◽  
Nadia Rucci

Osteoblasts, the cells that build up our skeleton, are remarkably versatile and important cells that need tight regulation in all the phases of their differentiation to guarantee proper skeletal development and homeostasis. Although we know many of the key pathways involved in osteoblast differentiation and signaling, it is becoming clearer and clearer that this is just the tip of the iceberg, and we are constantly discovering novel concepts in osteoblast physiology. In this review, we discuss well-established pathways of osteoblastic differentiation, i.e., the classical ones committing mesenchymal stromal cells to osteoblast, and then osteocytes as well as recently emerged players. In particular, we discuss micro (mi)RNAs, long non-coding (lnc)RNAs, circular (circ)RNAs, and extracellular vesicles, focusing on the mechanisms through which osteoblasts are regulated by these factors, and conversely, how they use extracellular vesicles to communicate with the surrounding microenvironment.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Qi Deng ◽  
Ping Li ◽  
Manju Che ◽  
Jiajia Liu ◽  
Soma Biswas ◽  
...  

Indian Hedgehog (IHH) signaling, a key regulator of skeletal development, is highly activated in cartilage and bone tumors. Yet deletion of Ptch1, encoding an inhibitor of IHH receptor Smoothened (SMO), in chondrocyte or osteoblasts does not cause tumorigenesis. Here, we show that Ptch1 deletion in mice Prrx1+mesenchymal stem/stromal cells (MSCs) promotes MSC proliferation and osteogenic and chondrogenic differentiation but inhibits adipogenic differentiation. Moreover, Ptch1 deletion led to development of osteoarthritis-like phenotypes, exostoses, enchondroma, and osteosarcoma in Smo-Gli1/2-dependent manners. The cartilage and bone tumors are originated from Prrx1+ lineage cells and express low levels of osteoblast and chondrocyte markers, respectively. Mechanistically, Ptch1 deletion increases the expression of Wnt5a/6 and leads to enhanced β-Catenin activation. Inhibiting Wnt/β-Catenin pathway suppresses development of skeletal anomalies including enchondroma and osteosarcoma. These findings suggest that cartilage/bone tumors arise from their early progenitor cells and identify the Wnt/β-Catenin pathway as a pharmacological target for cartilage/bone neoplasms.


2009 ◽  
Vol 296 (1) ◽  
pp. L71-L81 ◽  
Author(s):  
Margaret A. Schwarz ◽  
Lauren Caldwell ◽  
Danielle Cafasso ◽  
Haihua Zheng

Lung morphogenesis requires precise coordination between branching morphogenesis and vascularization to generate distal airways capable of supporting respiration at the cell-cell interface. The specific origins and types of blood vessels that initially form in the lung, however, remain obscure. Herein, we definitively show that during the early phases of lung development [i.e., embryonic day ( E) 11.5], functional vessels, replete with blood flow, are restricted to the mesenchyme, distal to the epithelium. However, by day E14.5, and in response to epithelial-derived VEGF signals, functional vessels extend from the mesenchyme to the epithelial interface. Moreover, these vessels reside adjacent to multipotent mesenchymal stromal cells that likely play a regulatory role in this process. As well as and distinct from the systemic vasculature, immunostaining for EphrinB2 and EphB4 revealed that arterial and venous identity is not distinguishable in emergent pulmonary vasculature. Collectively, this study provides evidence that lung vascularization initially originates in the mesenchyme, distal to the epithelium, and that arterial-venous specification does not exist in the early lung. At a mechanistic level, we show that basilar epithelial VEGF prompts endothelial cells to move toward the epithelium where they undergo morphogenesis during the proliferative, canalicular stage. Thus our findings challenge existing notions of vascular origin and identity during development.


2005 ◽  
Vol 173 (4S) ◽  
pp. 387-387
Author(s):  
Quan Wu ◽  
Jian-Dang Shi ◽  
Yu Liu ◽  
Ke-Ming Wang ◽  
Helmut Klocker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document