Dissolution kinetics of trapped air in a spherical void: Modeling the long-term saturation of cementitious materials

2020 ◽  
Vol 130 ◽  
pp. 105996
Author(s):  
Scott H. Smith ◽  
Matthieu Vandamme ◽  
Kimberly E. Kurtis
2009 ◽  
Vol 6 (6) ◽  
pp. 551 ◽  
Author(s):  
Dawn M. Wellman ◽  
Bruce K. McNamara ◽  
Diana H. Bacon ◽  
Elsa A. Cordova ◽  
Ruby M. Ermi ◽  
...  

Environmental context. Uranium-phosphate minerals have been identified as a long-term controlling phase that limit the mobility of uranium to groundwater in many contaminated subsurface environments. Complex, coupled processes confound the ability to isolate the rates attributed to individual processes. Results of this investigation provide the necessary information to refine current prediction on the release and long-term fate of uranium in subsurface environments. Abstract. The purpose of this investigation was to conduct a series of single-pass flow-through (SPFT) tests to (1) quantify the effect of temperature (23–90°C) and pH (6–10) on meta-torbernite dissolution; (2) compare the dissolution of meta-torbernite to other autunite-group minerals; and (3) evaluate the effect of aqueous phosphate on the dissolution kinetics of meta-torbernite. Results presented here illustrate meta-torbernite dissolution rates increase by ~100× over the pH interval of 6 to 10, irrespective of temperature. The power law coefficient for meta-torbernite, η = 0.59 ± 0.07, is greater than that quantified for Ca-meta-autunite, η = 0.42 ± 0.12. This suggests the stability of meta-torbernite is greater than that of meta-autunite, which is reflected in the predicted stability constants. The rate equation for the dissolution of meta-torbernite as a function of aqueous phosphate concentration is log rdissol (mol m–2 s–1) = –4.7 × 10–13 + 4.1 × 10–10[PO43–].


MRS Advances ◽  
2018 ◽  
Vol 3 (21) ◽  
pp. 1133-1137 ◽  
Author(s):  
Yulia Arinicheva ◽  
Stefan Neumeier ◽  
Felix Brandt ◽  
Dirk Bosbach ◽  
Guido Deissmann

Single-phase monazite-type ceramics are discussed as waste forms for the safe disposal of surplus plutonium or separated minor actinides. To derive a fundamental understanding of the long-term stability of these materials under repository relevant conditions, the dissolution kinetics of synthetic lanthanum monazite (LaPO4) were studied in dynamic dissolution experiments in the temperature range from 50 to 90°C under acidic conditions. The surface area normalised dissolution rates increased with temperature from 3.2·10-5 g m-2 d-1 at 50°C to 1.8·10-4 g m-2 d-1 at 90°C. The apparent activation energy Ea of the dissolution process was determined to be about 44 kJ mol-1, indicating a predominantly surface reaction controlled dissolution process in this temperature range. From thermodynamic considerations it can be inferred that the dissolution of the LaPO4 ceramics is governed by the dissolution of a thin layer of La-rhabdophane (LaPO4 · 0.667H2O) forming at the monazite surface in low temperature aqueous environments.


2003 ◽  
Vol 807 ◽  
Author(s):  
Hiroshi Ohmoto ◽  
Kathryn R. Spangler ◽  
Yumiko Watanabe ◽  
Gento Kamei

ABSTRACTTo determine the initial rates and effects of silica in solution on the dissolution kinetics of smectite, short- and long-term batch experiments (0.5 hour to 30 days) were completed at three temperatures (T = 25, 50, and 75°C) using stock solutions pH adjusted by NaOH (pH = 12, 13, and 13.5) with varying initial silica concentrations (0, 30, 60, and 100 ppm). The following important characteristics were observed at pH = 12: (1) The concentrations of Al, Si, Mg, Fe, and Ti in solutions increase rapidly during the first ∼2 hours and reach steady state (equilibrium) within ∼5 days. (2) The concentration ratios of Al, Si, Fe, Mg, and Ti in solutions during the early (<2 hours) reaction phase differ significantly from those of smectite, indicating initial dissolution proceeds non-stoichiometrically; Al dissolves much faster than Si, Mg, Fe, and Ti. (3) Further dissolution of smectite proceeds nearly stoichiometrically, including Fe and Ti. (4) The high solubility of Ti in highly alkaline solutions may be due to the formation of aqueous complexes, such as TiO(OH)3− and TiO2(OH)22−, similar to aqueous silica species. (5) The initial rate of smectite dissolution increases with increasing pH, T, and initial silica content of solution. (6) The silica in solution acts as a promoter and a catalyst, rather than an inhibitor, of smectite dissolution in high-alkaline solutions. This role is easily recognizable when the solubility of smectite and amorphous silica are very high, i.e., at pH >∼9.


1991 ◽  
Vol 257 ◽  
Author(s):  
Son N. Nguyen ◽  
Homer C. Weed ◽  
Herman R. Leider ◽  
Ray B. Stout

ABSTRACTThe modelling of radionuclide release from waste forms is an important part of the performance assessment of a potential, high-level radioactive waste repository. Since spent fuel consists of UO2 containing actinide elements and other fission products, it is necessary to determine the principal parameters affecting UO2 dissolution and quantify their effects on the dissolution rate before any prediction of long term release rates of radionuclides from the spent fuel can be made.


1977 ◽  
Vol 16 (01) ◽  
pp. 30-35 ◽  
Author(s):  
N. Agha ◽  
R. B. R. Persson

SummaryGelchromatography column scanning has been used to study the fractions of 99mTc-pertechnetate, 99mTcchelate and reduced hydrolyzed 99mTc in preparations of 99mTc-EDTA(Sn) and 99mTc-DTPA(Sn). The labelling yield of 99mTc-EDTA(Sn) chelate was as high as 90—95% when 100 μmol EDTA · H4 and 0.5 (Amol SnCl2 was incubated with 10 ml 99mTceluate for 30—60 min at room temperature. The study of the influence of the pH-value on the fraction of 99mTc-EDTA shows that pH 2.8—2.9 gave the best labelling yield. In a comparative study of the labelling kinetics of 99mTc-EDTA(Sn) and 99mTc- DTPA(Sn) at different temperatures (7, 22 and 37°C), no significant influence on the reduction step was found. The rate constant for complex formation, however, increased more rapidly with increased temperature for 99mTc-DTPA(Sn). At room temperature only a few minutes was required to achieve a high labelling yield with 99mTc-DTPA(Sn) whereas about 60 min was required for 99mTc-EDTA(Sn). Comparative biokinetic studies in rabbits showed that the maximum activity in kidneys is achieved after 12 min with 99mTc-EDTA(Sn) but already after 6 min with 99mTc-DTPA(Sn). The long-term disappearance of 99mTc-DTPA(Sn) from the kidneys is about five times faster than that for 99mTc-EDTA(Sn).


2021 ◽  
Vol 11 (9) ◽  
pp. 4028
Author(s):  
Asghar Gholizadeh Vayghan ◽  
Liesbeth Horckmans ◽  
Ruben Snellings ◽  
Arne Peys ◽  
Priscilla Teck ◽  
...  

This research investigated the possibility of using metallurgical slags from the copper and lead industries as partial replacement for cement. The studied slags were fayalitic, having a mainly ferro-silicate composition with minor contents of Al2O3 and CaO. The slags were treated at 1200–1300 °C (to reduce the heavy metal content) and then granulated in water to promote the formation of reactive phases. A full hydration study was carried out to assess the kinetics of reactions, the phases formed during hydration, the reactivity of the slags and their strength activity as supplementary cementitious material (SCM). The batch-leaching behaviour of cementitious mixtures incorporating treated slags was also investigated. The results showed that all three slags have satisfactory leaching behaviour and similar performance in terms of reactivity and contribution to the strength development. All slags were found to have mediocre reactivity and contribution to strength, especially at early ages. Nonetheless, they passed the minimum mechanical performance requirements and were found to qualify for use in cement.


Sign in / Sign up

Export Citation Format

Share Document