Prehabilitation modulates cell protection proteins expressions of gut in mice

2021 ◽  
Vol 46 ◽  
pp. S786
Author(s):  
K. Takahashi ◽  
K. Fukatsu ◽  
S. Murakoshi ◽  
H. Takayama ◽  
M. Noguchi ◽  
...  
Keyword(s):  
Antioxidants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 36
Author(s):  
Francisca Félix ◽  
Catarina C. V. Oliveira ◽  
Elsa Cabrita

In recent years, the effects of novel antioxidants have played an important role in the research focusing on fish cell protection. As food demand grows, aquaculture production becomes more intensive, and fish are more exposed to oxidative stress conditions, like high densities, temperature shifting, frequent fish handling and samplings, and prophylactic or disease treatments, which expose fish to a different environment. Particularly in reproduction, germ cells lose antioxidant capacity with spermatogenesis, as spermatozoa are more prone to oxidative stress. Antioxidants have been used in a variety of fish physiological problems including in reproduction and in the establishment of cryopreservation protocols. From the most used antioxidants to natural plant food and herbs, and endogenously produced antioxidants, like melatonin, a review of the literature available in terms of their effects on the protection of fish spermatozoa is presented here in a classified structure. Several direct and indirect approaches to improve gamete quality using antioxidants administration are mentioned (through feed supplementation or by adding in cryopreservation media), as well as factors affecting the efficiency of these molecules and their mechanisms of action. Special attention is given to the unclear melatonin pathway and its potential scavenger activity to prevent and counteract oxidative stress damage on fish spermatozoa.


Toxins ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 312
Author(s):  
Nolwenn Hymery ◽  
Xavier Dauvergne ◽  
Halima Boussaden ◽  
Stéphane Cérantola ◽  
Dorothée Faugère ◽  
...  

Twelve halophyte species belonging to different families, widely represented along French Atlantic shoreline and commonly used in traditional medicine, were screened for protective activities against mycotoxins, in order to set out new promising sources of natural ingredients for feed applications. Selected halophytic species from diverse natural habitats were examined for their in vitro anti-mycotoxin activities, through viability evaluation of Madin-Darby Bovine Kidney (MDBK) and intestinal porcine enterocyte (IPEC-J2) cell lines. Besides, the in vitro antioxidant activities of plant extracts were assessed (total antioxidant and 2,2-diphenyl-1-picrylhydrazyl (DPPH)-scavenging bioassays). Of the 12 species, Galium arenarium, Convolvulus soldanella and Eryngium campestre exhibited the most protective action on MDBK and IPEC-J2 cells against zearalenone (ZEN) or T2 toxin contamination (restoring about 75% of cell viability at 10 μg·mL−1) without inflammation response. They also had strong antioxidant capacities (Inhibitory concentration of 50% (IC50) < 100 μg·mL−1 for DPPH radical and total antioxidant capacity (TAC) of 100 to 200 mg Ascorbic Acid Equivalent (AAE)·g−1 Dry Weight), suggesting that cell protection against intoxication involves antioxidant action. A bio-guided study showed that fractions of G. arenarium extract protect MDBK cells against T2 or ZEN toxicity and several major compounds like chlorogenic acid and asperuloside could be involved in this protective effect. Overall, our results show that the halophytes G. arenarium, C. soldanella and E. campestre should be considered further as new sources of ingredients for livestock feed with protective action against mycotoxin intoxication.


2010 ◽  
Vol 177 (5) ◽  
pp. 2268-2277 ◽  
Author(s):  
Hiroki Otsuka ◽  
Noboru Arimura ◽  
Shozo Sonoda ◽  
Makoto Nakamura ◽  
Teruto Hashiguchi ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 614
Author(s):  
Martyna Zagórska-Dziok ◽  
Aleksandra Ziemlewska ◽  
Tomasz Bujak ◽  
Zofia Nizioł-Łukaszewska ◽  
Zofia Hordyjewicz-Baran

Due to the constantly growing interest in ingredients of natural origin, this study attempts to evaluate the possibility of using extracts from three Ayurvedic plants in preparations for the care and treatment of skin diseases. Therefore, studies of antioxidant properties were carried out using DPPH and ABTS radicals, obtaining 76% and 88% of these radical scavenging, respectively. A significant decrease in the intracellular level of free radicals and an increase in the activity of the antioxidant enzyme-superoxide dismutase by almost 60% were also observed. In addition, the extracts were assessed for anti-inflammatory and anti-aging properties, obtaining over 70% inhibition of lipoxygenase activity and almost 40% of collagenase. Additionally, the cytoprotective properties of the obtained extracts on skin cells, keratinocytes and fibroblasts, were demonstrated. To assess the content of biologically active compounds, HPLC-electrospray ionization (ESI)-MS/MS multiple reaction monitoring (MRM) analyses were performed. The obtained results show that all three analyzed plants are a valuable source of biologically active substances with desired properties in the context of skin cell protection. Particularly noteworthy is the extract of Epilobium angustifolium L., for which the most promising results were obtained.


Author(s):  
Yi Wang ◽  
Sui Fang ◽  
Yan Wu ◽  
Xi Cheng ◽  
Lei-ke Zhang ◽  
...  

AbstractLack of efficiency has been a major problem shared by all currently developed anti-SARS-CoV-2 therapies. Our previous study shows that SARS-CoV-2 structural envelope (2-E) protein forms a type of cation channel, and heterogeneously expression of 2-E channels causes host cell death. In this study we developed a cell-based high throughput screening (HTS) assay and used it to discover inhibitors against 2-E channels. Among 4376 compounds tested, 34 hits with cell protection activity were found. Followed by an anti-viral analysis, 15 compounds which could inhibit SARS-CoV-2 replication were identified. In electrophysiological experiments, three representatives showing inhibitory effect on 2-E channels were chosen for further characterization. Among them, proanthocyanidins directly bound to 2-E channel with binding affinity (KD) of 22.14 μM in surface plasmon resonance assay. Molecular modeling and docking analysis revealed that proanthocyanidins inserted into the pore of 2-E N-terminal vestibule acting as a channel blocker. Consistently, mutations of Glu 8 and Asn 15, two residues lining the proposed binding pocket, abolished the inhibitory effects of proanthocyanidins. The natural product proanthocyanidins are widely used as cosmetic, suggesting a potential of proanthocyanidins as disinfectant for external use. This study further demonstrates that 2-E channel is an effective antiviral drug target and provides a potential antiviral candidate against SARS-CoV-2.


2021 ◽  
Vol 22 (14) ◽  
pp. 7247
Author(s):  
Jana Riegger ◽  
Julia Baumert ◽  
Frank Zaucke ◽  
Rolf E. Brenner

The hexosamine biosynthetic pathway (HBP) is essential for the production of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), the building block of glycosaminoglycans, thus playing a crucial role in cartilage anabolism. Although O-GlcNAcylation represents a protective regulatory mechanism in cellular processes, it has been associated with degenerative diseases, including osteoarthritis (OA). The present study focuses on HBP-related processes as potential therapeutic targets after cartilage trauma. Human cartilage explants were traumatized and treated with GlcNAc or glucosamine sulfate (GS); PUGNAc, an inhibitor of O-GlcNAcase; or azaserine (AZA), an inhibitor of GFAT-1. After 7 days, cell viability and gene expression analysis of anabolic and catabolic markers, as well as HBP-related enzymes, were performed. Moreover, expression of catabolic enzymes and type II collagen (COL2) biosynthesis were determined. Proteoglycan content was assessed after 14 days. Cartilage trauma led to a dysbalanced expression of different HBP-related enzymes, comparable to the situation in highly degenerated tissue. While GlcNAc and PUGNAc resulted in significant cell protection after trauma, only PUGNAc increased COL2 biosynthesis. Moreover, PUGNAc and both glucosamine derivatives had anti-catabolic effects. In contrast, AZA increased catabolic processes. Overall, “fueling” the HBP by means of glucosamine derivatives or inhibition of deglycosylation turned out as cells and chondroprotectives after cartilage trauma.


2008 ◽  
Vol 51 (7) ◽  
pp. 2196-2207 ◽  
Author(s):  
Hendrik Stukenbrock ◽  
Rainer Mussmann ◽  
Marcus Geese ◽  
Yoan Ferandin ◽  
Olivier Lozach ◽  
...  

1976 ◽  
Vol 22 (4) ◽  
pp. 360-366 ◽  
Author(s):  
Yossef Manor ◽  
Abraham J. Treves ◽  
Irun R. Cohen ◽  
Michael Feldman

Sign in / Sign up

Export Citation Format

Share Document