scholarly journals The Hexosamine Biosynthetic Pathway as a Therapeutic Target after Cartilage Trauma: Modification of Chondrocyte Survival and Metabolism by Glucosamine Derivatives and PUGNAc in an Ex Vivo Model

2021 ◽  
Vol 22 (14) ◽  
pp. 7247
Author(s):  
Jana Riegger ◽  
Julia Baumert ◽  
Frank Zaucke ◽  
Rolf E. Brenner

The hexosamine biosynthetic pathway (HBP) is essential for the production of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), the building block of glycosaminoglycans, thus playing a crucial role in cartilage anabolism. Although O-GlcNAcylation represents a protective regulatory mechanism in cellular processes, it has been associated with degenerative diseases, including osteoarthritis (OA). The present study focuses on HBP-related processes as potential therapeutic targets after cartilage trauma. Human cartilage explants were traumatized and treated with GlcNAc or glucosamine sulfate (GS); PUGNAc, an inhibitor of O-GlcNAcase; or azaserine (AZA), an inhibitor of GFAT-1. After 7 days, cell viability and gene expression analysis of anabolic and catabolic markers, as well as HBP-related enzymes, were performed. Moreover, expression of catabolic enzymes and type II collagen (COL2) biosynthesis were determined. Proteoglycan content was assessed after 14 days. Cartilage trauma led to a dysbalanced expression of different HBP-related enzymes, comparable to the situation in highly degenerated tissue. While GlcNAc and PUGNAc resulted in significant cell protection after trauma, only PUGNAc increased COL2 biosynthesis. Moreover, PUGNAc and both glucosamine derivatives had anti-catabolic effects. In contrast, AZA increased catabolic processes. Overall, “fueling” the HBP by means of glucosamine derivatives or inhibition of deglycosylation turned out as cells and chondroprotectives after cartilage trauma.

2019 ◽  
Vol 20 (11) ◽  
pp. 920-933 ◽  
Author(s):  
Lucía Gato-Calvo ◽  
Tamara Hermida-Gómez ◽  
Cristina R. Romero ◽  
Elena F. Burguera ◽  
Francisco J. Blanco

Background: Platelet Rich Plasma (PRP) has recently emerged as a potential treatment for osteoarthritis (OA), but composition heterogeneity hampers comparison among studies, with the result that definite conclusions on its efficacy have not been reached. Objective: 1) To develop a novel methodology to prepare a series of standardized PRP releasates (PRP-Rs) with known absolute platelet concentrations, and 2) To evaluate the influence of this standardization parameter on the anti-inflammatory properties of these PRP-Rs in an in vitro and an ex vivo model of OA. Methods: A series of PRPs was prepared using the absolute platelet concentration as the standardization parameter. Doses of platelets ranged from 0% (platelet poor plasma, PPP) to 1.5·105 platelets/µl. PRPs were then activated with CaCl2 to obtain releasates (PRP-R). Chondrocytes were stimulated with 10% of each PRP-R in serum-free culture medium for 72 h to assess proliferation and viability. Cells were co-stimulated with interleukin (IL)-1β (5 ng/ml) and 10% of each PRP-R for 48 h to determine the effects on gene expression, secretion and intra-cellular content of common markers associated with inflammation, catabolism and oxidative stress in OA. OA cartilage explants were co-stimulated with IL-1β (5 ng/ml) and 10% of either PRP-R with 0.75·105 platelets/µl or PRP-R with 1.5·105 platelets/µl for 21 days to assess matrix inflammatory degradation. Results: Chondrocyte viability was not affected, and proliferation was dose-dependently increased. The gene expression of all pro-inflammatory mediators was significantly and dose-independently reduced, except for that of IL-1β and IL-8. Immunoblotting corroborated this effect for inducible NO synthase (NOS2). Secreted matrix metalloproteinase-13 (MMP-13) was reduced to almost basal levels by the PRP-R from PPP. Increasing platelet dosage led to progressive loss to this anti-catabolic ability. Safranin O and toluidine blue stains supported the beneficial effect of low platelet dosage on cartilage matrix preservation. Conclusion: We have developed a methodology to prepare PRP releasates using the absolute platelet concentration as the standardization parameter. Using this approach, the composition of the resulting PRP derived product is independent of the donor initial basal platelet count, thereby allowing the evaluation of its effects objectively and reproducibly. In our OA models, PRP-Rs showed antiinflammatory, anti-oxidant and anti-catabolic properties. Platelet enrichment could favor chondrocyte proliferation but is not necessary for the above effects and could even be counter-productive.


2018 ◽  
Vol 19 (11) ◽  
pp. 3485 ◽  
Author(s):  
Yunyun Luo ◽  
Yi He ◽  
Ditte Reker ◽  
Natasja Gudmann ◽  
Kim Henriksen ◽  
...  

N-terminal propeptide of type II collagen (PIINP) is a biomarker reflecting cartilage formation. PIINP exists in two main splice variants termed as type IIA and type IIB collagen NH2-propeptide (PIIANP, PIIBNP). PIIANP has been widely recognized as a cartilage formation biomarker. However, the utility of PIIBNP as a marker in preclinical and clinical settings has not been fully investigated yet. In this study, we aimed to characterize an antibody targeting human PIIBNP and to develop an immunoassay assessing type II collagen synthesis in human blood samples. A high sensitivity electrochemiluminescence immunoassay, hsPRO-C2, was developed using a well-characterized antibody against human PIIBNP. Human cartilage explants from replaced osteoarthritis knees were cultured for ten weeks in the presence of growth factors, insulin-like growth factor 1 (IGF-1) or recombinant human fibroblast growth factor 18 (rhFGF-18). The culture medium was changed every seven days, and levels of PIIBNP, PIIANP, and matrix metalloproteinase 9-mediated degradation of type II collagen (C2M) were analyzed herein. Serum samples from a cross-sectional knee osteoarthritis cohort, as well as pediatric and rheumatoid arthritis samples, were assayed for PIIBNP and PIIANP. Western blot showed that the antibody recognized PIIBNP either as a free fragment or attached to the main molecule. Immunohistochemistry demonstrated that PIIBNP was predominately located in the extracellular matrix of the superficial and deep zones and chondrocytes in both normal and osteoarthritic articular cartilage. In addition, the hsPRO-C2 immunoassay exhibits acceptable technical performances. In the human cartilage explants model, levels of PIIBNP, but not PIIANP and C2M, were increased (2 to 7-fold) time-dependently in response to IGF-1. Moreover, there was no significant correlation between PIIBNP and PIIANP levels when measured in knee osteoarthritis, rheumatoid arthritis, and pediatric serum samples. Serum PIIBNP was significantly higher in controls (KL0/1) compared to OA groups (KL2/3/4, p = 0.012). The hsPRO-C2 assay shows completely different biological and clinical patterns than PIIANP ELISA, suggesting that it may be a promising biomarker of cartilage formation.


2021 ◽  
Author(s):  
Kimberly Kroupa ◽  
Man I Wu ◽  
Juncheng Zhang ◽  
Magnus Jensen ◽  
Wei Wong ◽  
...  

The development of treatments for osteoarthritis (OA) is burdened by the lack of standardized biomarkers of cartilage health that can be applied in clinical trials. We present a novel arthroscopic Raman probe that can optically biopsy cartilage and quantify key ECM biomarkers for determining cartilage composition, structure, and material properties in health and disease. Technological and analytical innovations to optimize Raman analysis include: 1) multivariate decomposition of cartilage Raman spectra into ECM-constituent-specific biomarkers (glycosaminoglycan [GAG], collagen [COL], water [H2O] scores), and 2) multiplexed polarized Raman spectroscopy to quantify superficial zone collagen anisotropy via a PLS-DA-derived Raman collagen alignment factor (RCAF). Raman measurements were performed on a series of ex vivo cartilage models: 1) chemically GAG-depleted bovine cartilage explants (n=40), 2) mechanically abraded bovine cartilage explants (n=30), 3) aging human cartilage explants (n=14), and 4) anatomical-site-varied ovine osteochondral explants (n=6). Derived Raman GAG score biomarkers predicted 95%, 66%, and 96% of the variation in GAG content of GAG-depleted bovine explants, human explants, and ovine explants, respectively (p<0.001). RCAF values were significantly different for explants with abrasion-induced superficial zone collagen loss (p<0.001). The multivariate linear regression of Raman-derived ECM biomarkers (GAG and H2O scores) predicted 94% of the variation in elastic modulus of ovine explants (p<0.001). Finally, we demonstrated the first in vivo Raman arthroscopy assessment of an ovine femoral condyle through intraarticular entry into the synovial capsule. This work advances Raman arthroscopy towards a transformative low cost, minimally invasive diagnostic platform for objective monitoring of treatment outcomes from emerging OA therapies.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Zhao V Wang ◽  
Yingfeng Deng ◽  
Ningguo Gao ◽  
Zully Pedrozo ◽  
Dan Li ◽  
...  

Background: The hexosamine biosynthetic pathway (HBP) generates UDP-GlcNAc (uridine diphosphate N-acetylglucosamine) for glycan synthesis and O-linked GlcNAc (O-GlcNAc) protein modifications. Despite the established role of the HBP in glucose metabolism and multiple diseases, regulation of the HBP remains largely undefined. Methods & Results: Here, we show that spliced Xbp1 (Xbp1s), the most conserved signal transducer of the unfolded protein response (UPR), is a direct transcriptional activator of the HBP. We demonstrate that the UPR triggers activation of the HBP by means of Xbp1s-dependent transcription of genes coding for key, rate-limiting enzymes. We establish that this previously unrecognized UPR-HBP axis is triggered in a variety of stress conditions known to promote O-GlcNAc modification. We go on to demonstrate that Xbp1s, acutely stimulated by ischemia/reperfusion (I/R) in heart, confers robust cardioprotection against I/R injury. We also show that HBP induction is required for this cardioprotective response. Mechanistically, HBP may mediate the adaptive branch of the UPR by activating autophagy and ER-associated degradation. Conclusion: These studies reveal that Xbp1s couples the UPR to the HBP, promoting robust cardioprotection during I/R.


Cartilage ◽  
2021 ◽  
pp. 194760352098876
Author(s):  
Shikhar Mehta ◽  
Cameron C. Young ◽  
Matthew R. Warren ◽  
Sumayyah Akhtar ◽  
Sandra J. Shefelbine ◽  
...  

Objective Advanced glycation end-product (AGE) accumulation is implicated in osteoarthritis (OA) pathogenesis in aging and diabetic populations. Here, we develop a representative nonenzymatic glycation-induced OA cartilage explant culture model and investigate the effectiveness of resveratrol, curcumin, and eugenol in inhibiting AGEs and the structural and biological hallmarks of cartilage degeneration. Design Bovine cartilage explants were treated with AGE–bovine serum albumin, threose, and ribose to determine the optimal conditions that induce physiological levels of AGEs while maintaining chondrocyte viability. AGE crosslinks, tissue stiffness, cell viability, metabolism and senescence, nitrite release and loss of glycosaminoglycans were assessed. Explants were cotreated with resveratrol, curcumin, or eugenol to evaluate their anti-AGE properties. Blind docking analysis was conducted to estimate binding energies of drugs with collagen II. Results Treatment with 100 mM ribose significantly increased AGE crosslink formation and tissue stiffness, resulting in reduced chondrocyte metabolism and enhanced senescence. Blind docking analysis revealed stronger binding energies of both resveratrol and curcumin than ribose, with glycation sites along a human collagen II fragment, indicating their increased likelihood of competitively inhibiting ribose activity. Resveratrol and curcumin, but not eugenol, successfully inhibited AGE crosslink formation and its associated downstream biological response. Conclusions We establish a cartilage explant model of OA that recapitulates several aspects of aged human cartilage. We find that resveratrol and curcumin are effective anti-AGE therapeutics with the potential to decelerate age-related and diabetes-induced OA. This in vitro nonenzymatic glycation-induced model provides a tool for screening OA drugs, to simultaneously evaluate AGE-induced biological and mechanical changes.


Marine Drugs ◽  
2020 ◽  
Vol 18 (12) ◽  
pp. 624 ◽  
Author(s):  
Nuna Araújo ◽  
Carla S. B. Viegas ◽  
Eva Zubía ◽  
Joana Magalhães ◽  
Acácio Ramos ◽  
...  

Osteoarthritis (OA) remains a prevalent chronic disease without effective prevention and treatment. Amentadione (YP), a meroditerpenoid purified from the alga Cystoseira usneoides, has demonstrated anti-inflammatory activity. Here, we investigated the YP anti-osteoarthritic potential, by using a novel OA preclinical drug development pipeline designed to evaluate the anti-inflammatory and anti-mineralizing activities of potential OA-protective compounds. The workflow was based on in vitro primary cell cultures followed by human cartilage explants assays and a new OA co-culture model, combining cartilage explants with synoviocytes under interleukin-1β (IL-1β) or hydroxyapatite (HAP) stimulation. A combination of gene expression analysis and measurement of inflammatory mediators showed that the proposed model mimicked early disease stages, while YP counteracted inflammatory responses by downregulation of COX-2 and IL-6, improved cartilage homeostasis by downregulation of MMP3 and the chondrocytes hypertrophic differentiation factors Col10 and Runx2. Importantly, YP downregulated NF-κB gene expression and decreased phosphorylated IkBα/total IkBα ratio in chondrocytes. These results indicate the co-culture as a relevant pre-clinical OA model, and strongly suggest YP as a cartilage protective factor by inhibiting inflammatory, mineralizing, catabolic and differentiation processes during OA development, through inhibition of NF-κB signaling pathways, with high therapeutic potential.


Rheumatology ◽  
2020 ◽  
Vol 59 (Supplement_2) ◽  
Author(s):  
Kathryn E McCall ◽  
Caroline Atherton ◽  
Christian Thudium ◽  
Carl Goodyear ◽  
Tom Evans ◽  
...  

Abstract Background Septic arthritis (SA) caused by bacterial species, such as Staphylococcus aureus, has high morbidity and mortality. Currently diagnosis is often prolonged and unreliable, with no suitable near-patient biomarkers available. To generate more reliable biomarkers and to understand pathogenesis we sought to develop a novel ex vivo system to explore the effect of pathogenic Staph. aureus strains in promoting cartilage degradation. Methods Human cartilage explants were obtained from femoral heads being surgically removed following trauma. Explants were infected for 48h with 106 cfu bacteria from two Staph. aureus SA-derived patient isolates (28g & 36v strains). In the final 24h of bacterial infection, neutrophils purified from healthy donor blood were added to explant cultures at 3 x 106 cells/well. Chondrocyte viability was assessed using CellTracker green CMFDA and propidium iodide. Images were captured using confocal microscopy (LSM880) and cells counted using Imaris software. Structural damage was measured by glycosaminoglycan (GAG) and a neo-epitope of MMP-mediated degradation of type II collagen (C2M) release. Statistical analysis was performed using GraphPad Prism software. Results When cartilage explants were co-cultured with bacteria +/- neutrophils, cell death was significantly increased compared to the negative control or addition of neutrophils alone, (Friedman multiple comparisons test, N = 3, negative control vs. bacteria - neutrophils p &lt;0.05, negative control vs. bacteria + neutrophils p &lt; 0.01). Cartilage breakdown, estimated via GAG release, was induced by Staph. aureus alone, whereas it was significantly enhanced upon neutrophil addition in the final 24h of co-culture (Friedman multiple comparisons test, N = 8, neutrophil vs. neutrophil + bacterial strain 36v p &lt;0.0001, neutrophil vs. neutrophil + bacterial strain 28g p &lt;0.0005). Therefore, it is the combined effect with neutrophils that results in significant cartilage destruction. Although cartilage is damaged with the bacterial infection, shown by GAG release, C2M was only released when the bacteria is co-cultured with neutrophils (Friedman multiple comparisons test, N = 8, 36v vs. 36v + neutrophil p &lt;0.0001, 28g vs. 28g + neutrophil p &lt;0.005). This indicates that C2M is a biomarker that could potentially be used to diagnose septic arthritis as neutrophils infiltrate the joint in response to a bacterial infection. Conclusion A co-culture model of septic arthritis has been developed which allows precise examination of the contribution of the host neutrophil response to cartilage damage. We used this to identify a collagen breakdown product as a biomarker of host response to infected cartilage. This novel model will be a valuable tool in understanding the pathology of joint infection and can be used for the identification of future diagnostic biomarkers. Disclosures K.E. McCall None. C. Atherton None. C. Thudium None. C. Goodyear Grants/research support; C.G. has received funding for research from Celgene, AstraZeneca, MedAnnex, UCB & Jannsen. T. Evans None. N. Millar Grants/research support; Novartis. I. McInnes Consultancies; I.M. has received consultancies fees from BMS, Abbvie, Lilly, GSK & Pfizer. Grants/research support; I.M received research funding from Calgene, Janssen, Novartis, Boehringer Ingelheim & BMS.


2020 ◽  
pp. jbc.RA120.015189
Author(s):  
Isadora A. Oliveira ◽  
Diego Allonso ◽  
Tácio V. A. Fernandes ◽  
Daniela M.S. Lucena ◽  
Gustavo T. Ventura ◽  
...  

Glycoconjugates play a central role in several cellular processes and alteration in their composition is associated with numerous human pathologies. Substrates for cellular glycosylation are synthesized in the hexosamine biosynthetic pathway, which is controlled by the glutamine:fructose-6-phosphate amidotransfera-se (GFAT). Human isoform 2 GFAT (hGFAT2) has been implicated in diabetes and cancer; however, there is no information about structural and enzymatic properties of this enzyme. Here, we report a successful expression and purification of a catalytically active recombinant hGFAT2 (rhGFAT2) in E. coli cells fused or not to a HisTag at the C-terminal end. Our enzyme kinetics data suggest that hGFAT2 does not follow the expected ordered bi-bi mechanism, and performs the glucosamine-6-phosphate synthesis much more slowly than previously reported for other GFATs. In addition, hGFAT2 is able to isomerize fructose-6-phosphate into glucose-6-phosphate even in the presence of equimolar amounts of glutamine, which results in unproductive glutamine hydrolysis. Structural analysis of a three-dimensional model of rhGFAT2, corroborated by circular dichroism data, indicated the presence of a partially structured loop in the glutaminase domain, whose sequence is present in eukaryotic enzymes but absent in the E. coli homolog. Molecular dynamics simulations suggest that this loop is the most flexible portion of the protein, and plays a key role on conformational states of hGFAT2. Thus, our study provides the first comprehensive set of data on the structure, kinetics and mechanics of hGFAT2, which will certainly contribute to further studies on the (patho)physiology of hGFAT2.


2020 ◽  
Author(s):  
Isadora A. Oliveira ◽  
Diego Allonso ◽  
Tácio V. A. Fernandes ◽  
Daniela M. S. Lucena ◽  
Gustavo T. Ventura ◽  
...  

AbstractGlycoconjugates play a central role in several cellular processes and alteration in their composition is associated to human pathologies. The hexosamine biosynthetic pathway is a route through which cells obtain substrates for cellular glycosylation, and is controlled by the glutamine: fructose-6-phosphate amidotransferase (GFAT). Human isoform 2 GFAT (hGFAT2) has been implicated in diabetes and cancer, however, there is no information about structural and enzymatic properties of this enzyme. Here, we report a successful expression and purification of a catalytically active recombinant hGFAT2 (rhGFAT2) in E. coli cells fused or not to a HisTag at the C-terminal end. Our enzyme kinetics data suggest that hGFAT2 does not follow the ordered bi-bi mechanism, and performs the glucosamine-6-phosphate synthesis much slowly than previously reported for other GFATs. In addition, hGFAT2 is able to isomerase fructose-6-phosphate into glucose-6-phosphate even in presence of equimolar amounts of glutamine, in an unproductive glutamine hydrolysis. Structural analysis of the generated three-dimensional model rhGFAT2, corroborated by circular dichroism data, indicated the presence of a partially structured loop in glutaminase domain, whose sequence is present in eukaryotic enzymes but absent in the E. coli homolog. Molecular dynamics simulations show such loop as the most flexible portion of the protein, which interacts with the protein mainly through the interdomain region, and plays a key role on conformational states of hGFAT2. Altogether, our study provides the first comprehensive set of data on the structure, kinetics and mechanics of hGFAT2, which will certainly contribute for further studies focusing on drug development targeting hGFAT2.


2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Christina Petlura ◽  
Lisa Walter ◽  
Geoff Werstuck

Introduction: Diabetes is a disease affecting millions of people worldwide, and is a major independent risk factor for cardiovascular disease (CVD). Despite a vast amount of research, the molecular mechanisms that link diabetes to CVD are not well understood. Current evidence suggests that increased flux through the hexosamine biosynthetic pathway (HBP) contributes to the development of hyperglycemia-associated diabetic complications. Our data suggest that increased HBP flux can induce vascular ER stress and accelerate atherogenesis in a mouse model. We hypothesized that this process can be attenuated by inhibiting the first and rate-limiting enzyme in the HBP - glutamine fructose-6-phosphate amidotransferase (GFAT) - using small molecules. Methods and Results: Using high-performance liquid chromatography coupled to mass spectrometry (HPLC-MS) we have developed a methodology to monitor and quantify the levels of the end product of the HBP, uridine diphosphate N -acetylglucosamine (UDP-GlcNAc). Treatment of HepG2 cells with glucosamine (0.2-5 mM), or adenovirus-directed overexpression of GFAT caused a 3-7 fold increase in UDP-GlcNAc ( P< 0.001 & P< 0.05, respectively). Inhibition of GFAT with three novel compounds - amrinone, lapachol or alloxan - decreased levels of UDP-GlcNAc by 1.5 ( P< 0.05), 3 ( P< 0.05) and 3.5-fold ( P< 0.001), respectively. Furthermore, we show that by modulating HBP flux, we can regulate ER stress levels in cultured HepG2 cells. The physiological relevance of this mechanism is supported by evidence of HBP augmentation in a hyperglycemic mouse model. Conclusions: These results support a role for the HBP in the development of atherosclerosis. Currently, MALDI imaging mass spectrometry is being performed on tissue sections to compare the levels of UDP-GlcNAc directly in hyperglycemic vs. normoglycemic mice. These studies may lead to the identification and validation of novel targets for the development of new pharmaceuticals to prevent diabetic atherosclerosis.


Sign in / Sign up

Export Citation Format

Share Document