Multi-stimuli responsive mesoporous silica-coated carbon nanoparticles for chemo-photothermal therapy of tumor

2020 ◽  
Vol 190 ◽  
pp. 110941 ◽  
Author(s):  
Hongyan Lu ◽  
Qinfu Zhao ◽  
Xiudan Wang ◽  
Yuling Mao ◽  
Caishun Chen ◽  
...  
2003 ◽  
Vol 775 ◽  
Author(s):  
G.V.Rama Rao ◽  
Qiang Fu ◽  
Linnea K. Ista ◽  
Huifang Xu ◽  
S. Balamurugan ◽  
...  

AbstractThis study details development of hybrid mesoporous materials in which molecular transport through mesopores can be precisely controlled and reversibly modulated. Mesoporous silica materials formed by surfactant templating were modified by surface initiated atom transfer radical polymerization of poly(N-isopropyl acrylamide) (PNIPAAm) a stimuli responsive polymer (SRP) within the porous network. Thermo gravimetric analysis and FTIR spectroscopy were used to confirm the presence of PNIPAAm on the silica surface. Nitrogen porosimetry, transmission electron microscopy and X-ray diffraction analyses confirmed that polymerization occurred uniformly within the porous network. Uptake and release of fluorescent dyes from the particles was monitored by spectrofluorimetry and scanning laser confocal microscopy. Results suggest that the presence of PNIPAAm, a SRP, in the porous network can be used to modulate the transport of aqueous solutes. At low temperature, (e.g., room temperature) the PNIPAAm is hydrated and extended and inhibits transport of analytes; at higher temperatures (e.g., 50°C) it is hydrophobic and is collapsed within the pore network, thus allowing solute diffusion into or out of the mesoporous silica. The transition form hydrophilic to hydrophobic state on polymer grafted mesoporous membranes was determined by contact angle measurements. This work has implications for the development of materials for the selective control of transport of molecular solutes in a variety of applications.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 71
Author(s):  
Thashini Moodley ◽  
Moganavelli Singh

With increasing incidence and mortality rates, cancer remains one of the most devastating global non-communicable diseases. Restricted dosages and decreased bioavailability, often results in lower therapeutic outcomes, triggering the development of resistance to conventionally used drug/gene therapeutics. The development of novel therapeutic strategies using multimodal nanotechnology to enhance specificity, increase bioavailability and biostability of therapeutics with favorable outcomes is critical. Gated vectors that respond to endogenous or exogenous stimuli, and promote targeted tumor delivery without prematurely cargo loss are ideal. Mesoporous silica nanoparticles (MSNs) are effective delivery systems for a variety of therapeutic agents in cancer therapy. MSNs possess a rigid framework and large surface area that can incorporate supramolecular constructs and varying metal species that allow for stimuli-responsive controlled release functions. Its high interior loading capacity can incorporate combination drug/gene therapeutic agents, conferring increased bioavailability and biostability of the therapeutic cargo. Significant advances in the engineering of MSNs structural and physiochemical characteristics have since seen the development of nanodevices with promising in vivo potential. In this review, current trends of multimodal MSNs being developed and their use in stimuli-responsive passive and active targeting in cancer therapy will be discussed, focusing on light, redox, pH, and temperature stimuli.


2021 ◽  
Vol 270 ◽  
pp. 115232
Author(s):  
Jerome Peter ◽  
Riyasudheen Nechikkattu ◽  
Anandhu Mohan ◽  
Anju Maria Thomas ◽  
Chang-Sik Ha

Author(s):  
Gang Wu ◽  
Bao Jiang ◽  
Lin Zhou ◽  
Ao Wang ◽  
Shaohua Wei

Activated carbon nanoparticles (ANs) were synthesized from coconut shell. ANs show peroxidase and photothermal conversion activities, allowing synergistic cancer treatment via chemodynamic therapy (CDT) and photothermal therapy (PTT).


2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
María Vallet-Regí

Mesoporous silica nanoparticles are receiving growing attention by the scientific biomedical community. Among the different types of inorganic nanomaterials, mesoporous silica nanoparticles have emerged as promising multifunctional platforms for nanomedicine. Since their introduction in the drug delivery landscape in 2001, mesoporous materials for drug delivery are receiving growing scientific interest for their potential applications in the biotechnology and nanomedicine fields. The ceramic matrix efficiently protects entrapped guest molecules against enzymatic degradation or denaturation induced by pH and temperature as no swelling or porosity changes take place as a response to variations in the surrounding medium. It is possible to load huge amounts of cargo into the mesopore voids and capping the pore entrances with different nanogates. The application of a stimulus provokes the nanocap removal and triggers the departure of the cargo. This strategy permits the design of stimuli-responsive drug delivery nanodevices.


2011 ◽  
Author(s):  
V. Vardarajan ◽  
L. Gu ◽  
A. Kanneganti ◽  
S. K. Mohanty ◽  
A. R. Koymen

RSC Advances ◽  
2016 ◽  
Vol 6 (94) ◽  
pp. 92073-92091 ◽  
Author(s):  
Yujuan Chen ◽  
Hui Zhang ◽  
Xiaoqing Cai ◽  
Jianbo Ji ◽  
Shuwang He ◽  
...  

By modifying the outer surface of MSNs with various functional groups or/and using a combination with other nanomaterials, stimuli-responsive and active targeting nanosystems can be designed for stimuli-responsive target delivery of anticancer drugs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaoxia Song ◽  
Zhi Chen ◽  
Xue Zhang ◽  
Junfeng Xiong ◽  
Teng Jiang ◽  
...  

AbstractMagnetic micro/nanorobots attracted much attention in biomedical fields because of their precise movement, manipulation, and targeting abilities. However, there is a lack of research on intelligent micro/nanorobots with stimuli-responsive drug delivery mechanisms for cancer therapy. To address this issue, we developed a type of strong covalently bound tri-bead drug delivery microrobots with NIR photothermal response azobenzene molecules attached to their carboxylic surface groups. The tri-bead microrobots are magnetic and showed good cytocompatibility even when their concentration is up to 200 µg/mL. In vitro photothermal experiments demonstrated fast NIR-responsive photothermal property; the microrobots were heated to 50 °C in 4 min, which triggered a significant increase in drug release. Motion control of the microrobots inside a microchannel demonstrated the feasibility of targeted therapy on tumor cells. Finally, experiments with lung cancer cells demonstrated the effectiveness of targeted chemo-photothermal therapy and were validated by cell viability assays. These results indicated that tri-bead microrobots have excellent potential for targeted chemo-photothermal therapy for lung cancer cell treatment.


Sign in / Sign up

Export Citation Format

Share Document