scholarly journals Rethinking multiscale cardiac electrophysiology with machine learning and predictive modelling

2019 ◽  
Vol 104 ◽  
pp. 339-351 ◽  
Author(s):  
Chris D. Cantwell ◽  
Yumnah Mohamied ◽  
Konstantinos N. Tzortzis ◽  
Stef Garasto ◽  
Charles Houston ◽  
...  
2019 ◽  
Vol 23 (1) ◽  
pp. 12-21 ◽  
Author(s):  
Shikha N. Khera ◽  
Divya

Information technology (IT) industry in India has been facing a systemic issue of high attrition in the past few years, resulting in monetary and knowledge-based loses to the companies. The aim of this research is to develop a model to predict employee attrition and provide the organizations opportunities to address any issue and improve retention. Predictive model was developed based on supervised machine learning algorithm, support vector machine (SVM). Archival employee data (consisting of 22 input features) were collected from Human Resource databases of three IT companies in India, including their employment status (response variable) at the time of collection. Accuracy results from the confusion matrix for the SVM model showed that the model has an accuracy of 85 per cent. Also, results show that the model performs better in predicting who will leave the firm as compared to predicting who will not leave the company.


Predictive modelling is a mathematical technique which uses Statistics for prediction, due to the rapid growth of data over the cloud system, data mining plays a significant role. Here, the term data mining is a way of extracting knowledge from huge data sources where it’s increasing the attention in the field of medical application. Specifically, to analyse and extract the knowledge from both known and unknown patterns for effective medical diagnosis, treatment, management, prognosis, monitoring and screening process. But the historical medical data might include noisy, missing, inconsistent, imbalanced and high dimensional data.. This kind of data inconvenience lead to severe bias in predictive modelling and decreased the data mining approach performances. The various pre-processing and machine learning methods and models such as Supervised Learning, Unsupervised Learning and Reinforcement Learning in recent literature has been proposed. Hence the present research focuses on review and analyses the various model, algorithm and machine learning technique for clinical predictive modelling to obtain high performance results from numerous medical data which relates to the patients of multiple diseases.


2021 ◽  
Vol 23 (2) ◽  
pp. 359-370
Author(s):  
Michał Matuszczak ◽  
Mateusz Żbikowski ◽  
Andrzej Teodorczyk

The article proposes an approach based on deep and machine learning models to predict a component failure as an enhancement of condition based maintenance scheme of a turbofan engine and reviews currently used prognostics approaches in the aviation industry. Component degradation scale representing its life consumption is proposed and such collected condition data are combined with engines sensors and environmental data. With use of data manipulation techniques, a framework for models training is created and models' hyperparameters obtained through Bayesian optimization. Models predict the continuous variable representing condition based on the input. Best performed model is identified by detemining its score on the holdout set. Deep learning models achieved 0.71 MSE score (ensemble meta-model of neural networks) and outperformed significantly machine learning models with their best score at 1.75. The deep learning models shown their feasibility to predict the component condition within less than 1 unit of the error in the rank scale.


2021 ◽  
Vol 25 (5) ◽  
pp. 1073-1098
Author(s):  
Nor Hamizah Miswan ◽  
Chee Seng Chan ◽  
Chong Guan Ng

Hospital readmission is a major cost for healthcare systems worldwide. If patients with a higher potential of readmission could be identified at the start, existing resources could be used more efficiently, and appropriate plans could be implemented to reduce the risk of readmission. Therefore, it is important to predict the right target patients. Medical data is usually noisy, incomplete, and inconsistent. Hence, before developing a prediction model, it is crucial to efficiently set up the predictive model so that improved predictive performance is achieved. The current study aims to analyse the impact of different preprocessing methods on the performance of different machine learning classifiers. The preprocessing applied by previous hospital readmission studies were compared, and the most common approaches highlighted such as missing value imputation, feature selection, data balancing, and feature scaling. The hyperparameters were selected using Bayesian optimisation. The different preprocessing pipelines were assessed using various performance metrics and computational costs. The results indicated that the preprocessing approaches helped improve the model’s prediction of hospital readmission.


2017 ◽  
Vol 9 (1) ◽  
pp. 23-47 ◽  
Author(s):  
Vinai George Biju ◽  
CM Prashanth

Abstract This paper describes a number of experiments to compare and validate the performance of machine learning classifiers. Creating machine learning models for data with wide varieties has huge applications in predictive modelling across multiple domain of science. This work reviews state of the art techniques in machine learning classifiers methods with several extent of magnitude in statistics and key findings that will be helpful in establishing best methodological practices for class predictions. Comprehensive comparative review analysis with statistical validations for various machine learning algorithm for SVM, Bagging, Boosting, Decision Trees and Nearest Neighborhood algorithm on multiple data sets is carried out. Focus on the statistical analysis of the results using Friedman-Test and Wilcoxon Test as well as other interpretative metrics like classification rate, ROC, F-measure are evaluated to benchmark results.


Predictive analysis comprises a vast variety of statistical techniques like “machine learning”, “predictive modelling” and “data mining” and uses current and historical statistics to predict future outcomes. It is used in both business and educational domain with equal applicability.This paper aims to give an overview of the top work done so far in this field. We have briefed on classical as well as latest approaches (using“machine learning”) in predictive analysis. Main aspects like feature selection and algorithm selection along with corresponding application is explained. Some of the most quoted papers in this field along with their objectives are listed in a table. This paper can give a good heads up to whoever wants to know and use predictive analysis for his academic or business application.


Author(s):  
Helper Zhou ◽  
Victor Gumbo

The emergence of machine learning algorithms presents the opportunity for a variety of stakeholders to perform advanced predictive analytics and to make informed decisions. However, to date there have been few studies in developing countries that evaluate the performance of such algorithms—with the result that pertinent stakeholders lack an informed basis for selecting appropriate techniques for modelling tasks. This study aims to address this gap by evaluating the performance of three machine learning techniques: ordinary least squares (OLS), least absolute shrinkage and selection operator (LASSO), and artificial neural networks (ANNs). These techniques are evaluated in respect of their ability to perform predictive modelling of the sales performance of small, medium and micro enterprises (SMMEs) engaged in manufacturing. The evaluation finds that the ANNs algorithm’s performance is far superior to that of the other two techniques, OLS and LASSO, in predicting the SMMEs’ sales performance.


Sign in / Sign up

Export Citation Format

Share Document