Proper cell dimension and number of particles per cell for DSMC

2011 ◽  
Vol 50 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Zhi-Xin Sun ◽  
Zhen Tang ◽  
Ya-Ling He ◽  
Wen-Quan Tao
Author(s):  
Z. X. Sun ◽  
Y. L. He ◽  
W. Q. Tao

Different opinions still exist on some basic principles of DSMC method, such as the proper grid dimension and the proper number of particles in a cell. In this paper DSMC simulation of Poiseuille flow is made to evaluate the dependence of simulation results on cell dimension and number of particles per cell. In the simulation process a self adapting block structured grid system is employed to make sure that the number of particles per cell is constant. The simulation covers both slip flow regime and transition flow regime and each regime covers both high pressure and low pressure. Our simulation results indicate that the number of particles per cell and scaling factor exert little influence on simulation result for both slip flow and transition flow when the number of particles per cell surpasses 5, but the dimension of cell influences the accuracy of result obviously. The error caused by cell dimension decreases as the diminish of cell dimension. It is concluded that in the DSMC method it is necessary to make sure that the cell is less than 1/2 of molecular mean free path.


Author(s):  
L. Andrew Staehelin

Freeze-etched membranes usually appear as relatively smooth surfaces covered with numerous small particles and a few small holes (Fig. 1). In 1966 Branton (1“) suggested that these surfaces represent split inner mem¬brane faces and not true external membrane surfaces. His theory has now gained wide acceptance partly due to new information obtained from double replicas of freeze-cleaved specimens (2,3) and from freeze-etch experi¬ments with surface labeled membranes (4). While theses studies have fur¬ther substantiated the basic idea of membrane splitting and have shown clearly which membrane faces are complementary to each other, they have left the question open, why the replicated membrane faces usually exhibit con¬siderably fewer holes than particles. According to Branton's theory the number of holes should on the average equal the number of particles. The absence of these holes can be explained in either of two ways: a) it is possible that no holes are formed during the cleaving process e.g. due to plastic deformation (5); b) holes may arise during the cleaving process but remain undetected because of inadequate replication and microscope techniques.


Author(s):  
Minakhi Pujari ◽  
Joachim Frank

In single-particle analysis of macromolecule images with the electron microscope, variations of projections are often observed that can be attributed to the changes of the particle’s orientation on the specimen grid (“rocking”). In the multivariate statistical analysis (MSA) of such projections, a single factor is often found that expresses a large portion of these variations. Successful angle calibration of this “rocking factor” would mean that correct angles can be assigned to a large number of particles, thus facilitating three-dimensional reconstruction.In a study to explore angle calibration in factor space, we used 40S ribosomal subunits, which are known to rock around an axis approximately coincident with their long axis. We analyzed micrographs of a field of these particles, taken with 20° tilt and without tilt, using the standard methods of alignment and MSA. The specimen was prepared with the double carbon-layer method, using uranyl acetate for negative staining. In the MSA analysis, the untilted-particle projections were used as active, the tilted-particle projections as inactive objects. Upon tilting, those particles whose rocking axes are parallel to the tilt axis will change their appearance in the same way as under the influence of rocking. Therefore, each vector, in factor space, joining a tilted and untilted projection of the same particle can be regarded as a local 20-degree calibration bar.


Author(s):  
M. F. Miller ◽  
A. R. Rubenstein

Studies of rotavirus particles in humans, monkeys and various non-primates with acute gastroenteritis have involved detection of virus in fecal material by electron microscopy. The EM techniques most commonly employed have been the conventional negative staining (Fig. 1) and immune aggregation (Fig. 2) procedures. Both methods are somewhat insensitive and can most reliably be applied to samples containing large quantities of virus either naturaLly or as a result of concentration by ultracentrifugation. The formation of immune complexes by specific antibody in the immune aggregation procedures confirms the rotavirus diagnosis, but the number of particles per given microscope field is effectively reduced by the aggregation process. In the present communication, we describe use of an on-grid immunoelectron microscopic technique in which rotavirus particles are mounted onto microscope grids that were pre-coated with specific antibody. The technique is a modification of a method originalLy introduced by Derrick (1) for studies of plant viruses.


1995 ◽  
Vol 74 (06) ◽  
pp. 1533-1540 ◽  
Author(s):  
Pål André Holme ◽  
Nils Olav Solum ◽  
Frank Brosstad ◽  
Nils Egberg ◽  
Tomas L Lindahl

SummaryThe mechanism of formation of platelet-derived microvesicles remains controversial.The aim of the present work was to study the formation of microvesicles in view of a possible involvement of the GPIIb-IIIa complex, and of exposure of negatively charged phospholipids as procoagulant material on the platelet surface. This was studied in blood from three Glanzmann’s thrombasthenia patients lacking GPIIb-IIIa and healthy blood donors. MAb FN52 against CD9 which activates the complement system and produces microvesicles due to a membrane permeabilization, ADP (9.37 μM), and the thrombin receptor agonist peptide SFLLRN (100 μM) that activates platelets via G-proteins were used as inducers. In a series of experiments platelets were also preincubated with PGE1 (20 μM). The number of liberated microvesicles, as per cent of the total number of particles (including platelets), was measured using flow cytometry with FITC conjugated antibodies against GPIIIa or GPIb. Activation of GPIIb-IIIa was detected as binding of PAC-1, and exposure of aminophospholipids as binding of annexin V. With normal donors, activation of the complement system induced a reversible PAC-1 binding during shape change. A massive binding of annexin V was seen during shape change as an irreversible process, as well as formation of large numbers of microvesicles (60.6 ±2.7%) which continued after reversal of the PAC-1 binding. Preincubation with PGE1 did not prevent binding of annexin V, nor formation of microvesicles (49.5 ± 2.7%), but abolished shape change and PAC-1 binding after complement activation. Thrombasthenic platelets behaved like normal platelets after activation of complement except for lack of PAC-1 binding (also with regard to the effect of PGE1 and microvesicle formation). Stimulation of normal platelets with 100 μM SFLLRN gave 16.3 ± 1.2% microvesicles, and strong PAC-1 and annexin V binding. After preincubation with PGE1 neither PAC-1 nor annexin V binding, nor any significant amount of microvesicles could be detected. SFLLRN activation of the thrombasthenic platelets produced a small but significant number of microvesicles (6.4 ± 0.8%). Incubation of thrombasthenic platelets with SFLLRN after preincubation with PGE1, gave results identical to those of normal platelets. ADP activation of normal platelets gave PAC-1 binding, but no significant annexin V labelling, nor production of microvesicles. Thus, different inducers of the shedding of microvesicles seem to act by different mechanisms. For all inducers there was a strong correlation between the exposure of procoagulant surface and formation of microvesicles, suggesting that the mechanism of microvesicle formation is linked to the exposure of aminophospholipids. The results also show that the GPIIb-IIIa complex is not required for formation of microvesicles after activation of the complement system, but seems to be of importance, but not absolutely required, after stimulation with SFLLRN.


1980 ◽  
Vol 45 (3) ◽  
pp. 777-782 ◽  
Author(s):  
Milan Šolc

The establishment of chemical equilibrium in a system with a reversible first order reaction is characterized in terms of the distribution of first passage times for the state of exact chemical equilibrium. The mean first passage time of this state is a linear function of the logarithm of the total number of particles in the system. The equilibrium fluctuations of composition in the system are characterized by the distribution of the recurrence times for the state of exact chemical equilibrium. The mean recurrence time is inversely proportional to the square root of the total number of particles in the system.


Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter covers the equations governing the evolution of particle distribution and relates the macroscopic thermodynamical quantities to the distribution function. The motion of N particles is governed by 6N equations of motion of first order in time, written in either Hamiltonian form or in terms of Poisson brackets. Thus, as this chapter shows, as the number of particles grows it becomes necessary to resort to a statistical description. The chapter first introduces the Liouville equation, which states the conservation of the probability density, before turning to the Boltzmann–Vlasov equation. Finally, it discusses the Jeans equations, which are the equations obtained by taking various averages over velocities.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1090
Author(s):  
Wenxu Wang ◽  
Damián Marelli ◽  
Minyue Fu

A popular approach for solving the indoor dynamic localization problem based on WiFi measurements consists of using particle filtering. However, a drawback of this approach is that a very large number of particles are needed to achieve accurate results in real environments. The reason for this drawback is that, in this particular application, classical particle filtering wastes many unnecessary particles. To remedy this, we propose a novel particle filtering method which we call maximum likelihood particle filter (MLPF). The essential idea consists of combining the particle prediction and update steps into a single one in which all particles are efficiently used. This drastically reduces the number of particles, leading to numerically feasible algorithms with high accuracy. We provide experimental results, using real data, confirming our claim.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Cyril Crawford ◽  
Emmanuel Vanoli ◽  
Baptiste Decorde ◽  
Maxime Lancelot ◽  
Camille Duprat ◽  
...  

AbstractThe COVID-19 pandemic has generated many concerns about cross-contamination risks, particularly in hospital settings and Intensive Care Units (ICU). Virus-laden aerosols produced by infected patients can propagate throughout ventilated rooms and put medical personnel entering them at risk. Experimental results found with a schlieren optical method have shown that the air flows generated by a cough and normal breathing were modified by the oxygenation technique used, especially when using High Flow Nasal Canulae, increasing the shedding of potentially infectious airborne particles. This study also uses a 3D Computational Fluid Dynamics model based on a Lattice Boltzmann Method to simulate the air flows as well as the movement of numerous airborne particles produced by a patient’s cough within an ICU room under negative pressure. The effects of different mitigation scenarii on the amount of aerosols potentially containing SARS-CoV-2 that are extracted through the ventilation system are investigated. Numerical results indicate that adequate bed orientation and additional air treatment unit positioning can increase by 40% the number of particles extracted and decrease by 25% the amount of particles deposited on surfaces 45s after shedding. This approach could help lay the grounds for a more comprehensive way to tackle contamination risks in hospitals, as the model can be seen as a proof of concept and be adapted to any room configuration.


Author(s):  
Bilitis Désirée Vanicela ◽  
Martin Nebel ◽  
Marielle Stephan ◽  
Christoph Riethmüller ◽  
Götz Theo Gresser

AbstractThe identification of a model organism for investigations of fine dust deposits on moss leaflets was presented. An optical method with SEM enabled the quantitative detection of fine dust particles in two orders of magnitude. Selection criteria were developed with which further moss species can be identified in order to quantify the number of fine dust particles on moss surfaces using the presented method. Among the five moss species examined, B. rutabulum had proven to be the most suitable model organism for the method presented here. The number of fine dust particles on the moss surface of B. rutabulum was documented during 4 weeks of cultivation in the laboratory using SEM images and a counting method. The fine dust particles were recorded in the order of 10 μm–0.3 μm, divided into two size classes and counted. Under laboratory conditions, the number of particles of the fine fraction 2.4 μm–0.3 μm decreased significantly.


Sign in / Sign up

Export Citation Format

Share Document