Interlaminar failure behavior of GLARE laminates under short-beam three-point-bending load

2016 ◽  
Vol 97 ◽  
pp. 361-367 ◽  
Author(s):  
Cheng Liu ◽  
Dandan Du ◽  
Huaguan Li ◽  
Yubing Hu ◽  
Yiwei Xu ◽  
...  
1999 ◽  
Vol 591 ◽  
Author(s):  
Tieyu Zheng ◽  
Steven Danyluk

ABSTRACTThis paper reports the development of a shadow moiré technique to measure the in-plane residual stresses of thin, flat strips. This is an extension of prior work on the measurement of in-plane residual stresses in silicon plates and wafers. Phase stepping shadow moir6 and digital image processing techniques are employed to measure the deflections of the silicon plate specimens subjected to three-point-bending at several different loads. The measured deflections over the area of the silicon plates are fitted with an equation represented by a 2-D polynomial. With the theory of thin plates with large deflection, the fitting coefficients are used to extract the in-plane stresses at the different bending load. The residual stress is resolved by linear regression of the in-plane stresses versus bending loads.


2020 ◽  
Vol 91 ◽  
pp. 106795
Author(s):  
Mingze Ma ◽  
Weixing Yao ◽  
Wen Jiang ◽  
Wei Jin ◽  
Yan Chen ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Qifeng Guo ◽  
Xinghui Wu ◽  
Meifeng Cai ◽  
Shengjun Miao

To investigate the effects of offset notch on the fracture properties of rock beam under bending load, granite beam specimens with “one single offset notch” and “central and offset double notches” are made. A series of three-point bending beam tests on the specimens are carried out by controlling the displacement rate of central notch. The whole load-displacement (P-CMOD) curves are obtained. Experimental results show that the larger the distance between the offset notch and beam central is, the larger are the peak load and nominal strength of the specimen. The peak load and nominal strength for the “central and offset double notches” specimens are both larger than those for the “single central notch” specimen. A fracture model considering the effect of offset notch is developed, and the relationship between the offset notch parameter, tensile strength, and fracture toughness is established.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2325 ◽  
Author(s):  
Jingxin Hao ◽  
Xinfeng Wu ◽  
Gloria Oporto ◽  
Jingxin Wang ◽  
Gregory Dahle ◽  
...  

A new type of Taiji honeycomb structure bonded outside with wood-based laminates was characterized from a mechanical standpoint. Both theoretical and experimental methods were employed to analyze comprehensively the deformation behavior and failure mechanism under a three-point bending test. The analytical analysis reveals that a Taiji honeycomb has 3.5 times higher strength in compression and 3.44 times higher strength in shear compared with a traditional hexagonal honeycomb. Considering the strength-weight issue, the novel structure also displays an increase in compression strength of 1.75 times and shear strength of 1.72 times. Under a three-point bending test, indentation and core shear failure played the dominant role for the total failure of a wooden sandwich with Taiji honeycomb core. Typical face yield was not observed due to limited thickness-span ratio of specimens. Large spans weaken the loading level due to the contribution of global bending stress in the compressive skin to indentation failure. A set of analytical equations between mechanical properties and key structure parameters were developed to accurately predict the threshold stresses corresponding to the onset of those deformation events, which offer critical new knowledge for the rational structure design of wooden sandwich composites.


2019 ◽  
Vol 795 ◽  
pp. 325-332
Author(s):  
Ji Shen Yang ◽  
Hong Yu Qi ◽  
Xiao Guang Yang ◽  
Duo Qi Shi

The research work in this paper is focused on studying the failure behavior of an integral π-shaped laminated composite structure subjected to a bending load. A progressive damage model based on the 3D Tsai-Wu failure criterion and a developed gradual degradation model was employed to simulate and assess the load-carrying capacity, the onset and propagation of damage, and the failure mechanisms. For this unique π-shaped composite structure, disbonding was found to be the dominant damage mode under bending load, and the approximate maximum load could be maintained for a brief time during the final failure due to the gradual loss nature of the load-carrying capacity. The extent of damage was found to be more serious on the side of Rib II compared to the other side.


2019 ◽  
Vol 183 ◽  
pp. 108112 ◽  
Author(s):  
Wei Fan ◽  
Wensheng Dang ◽  
Tao Liu ◽  
Juanzi Li ◽  
Lili Xue ◽  
...  

Author(s):  
Izumi Nakamura ◽  
Akihito Otani ◽  
Masaki Shiratori

Pressurized piping systems used in nuclear power plants are supposed to be degraded by the effects of aging. Local wall thinning is one of the defects considered to be caused in piping systems due to the effects of aging, but the failure behavior of thinned wall pipes under seismic load is still not clear. Therefore an experimental and analytical study to clarify the failure behavior of thinned wall pipes is being conducted. In this paper, the experimental results of locally thinned wall elbows under cyclic bending load are described. Displacement-controlled cyclic bending tests were conducted on elbows with local wall thinning. The test models were pressurized to 10MPa with room temperature water and were subjected to in-plane or/and out-of-plane cyclic bending load until their failures. From the tests, the failure modes of the thinned wall elbows were found to be fatigue failure at the flank of the elbow, or fatigue and buckling failure accompanied with ratchet deformation. It was also found that the life of the thinned wall elbow subjected to out-of-plane bending were extremely lower than that of the elbow without wall thinning. The failure modes and fatigue lives of elbows seemed to be affected by a ratchet phenomenon.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Cui Xu ◽  
Huang Yanjiao ◽  
Wang Shou ◽  
Lu Chun ◽  
Fang Luping

Triangular grid reinforced by carbon fiber/epoxy (CF/EP) was designed and manufactured. The sandwich structure was prepared by gluing the core and composite skins. The mechanical properties of the sandwich structure were investigated by the finite element analysis (FEA) and three-point bending methods. The calculated bending stiffness and core shear stress were compared to the characteristics of a honeycomb sandwich structure. The results indicated that the triangular core ultimately failed under a bending load of 11000 N; the principal stress concentration was located at the loading region; and the cracks occurred on the interface top skin and triangular core. In addition, the ultimate stress bearing of the sandwich structure was 8828 N. The experimental results showed that the carbon fiber reinforced triangular grid was much stiffer and stronger than the honeycomb structure.


Sign in / Sign up

Export Citation Format

Share Document