scholarly journals A novel design method for the fast and cost-effective manufacture of composite parts employing the Quilted Stratum Process

2019 ◽  
Vol 158 ◽  
pp. 364-372 ◽  
Author(s):  
F.X. Irisarri ◽  
T. Macquart ◽  
C. Julien ◽  
D. Espinassou
2021 ◽  
Vol 28 (4) ◽  
pp. 199-212
Author(s):  
Anthony L Wong

Natural terrain landslides pose a global threat as they often cause casualties and economic losses. Potential impacts of climate change could further aggravate the landslide risk and robust mitigation measures such as rigid debris-resisting barriers are particularly important in protecting lives and properties. Traditionally, rigid barriers are designed based on empirical approaches which generally oversimplify the dynamic nature of debris-barrier interaction. This often results in overlyconservative designs where the barrier structures are not only bulky and environmentally intrusive, but also difficult to construct. There is thus a pressing need to optimise the design approach. In this regard, the Geotechnical Engineering Office has been endeavouring to enhance the process efficiency, in collaboration with top-notch experts, by capitalising on the latest advancement in computational simulations and physical testing, and improving the understanding of the physical process. A technical breakthrough has been achieved with respect to an improved knowledge in the debris flow dynamic and the complex debris-barrier interaction. A novel design method covering geotechnical and structural aspects has been developed for use in Hong Kong. This would bring about more cost-effective barrier designs, with enhanced design reliability and robustness.


2021 ◽  
Vol 13 (7) ◽  
pp. 168781402110349
Author(s):  
Huiqiang Guo ◽  
Mingzhe Li ◽  
Pengfei Sun ◽  
Changfeng Zhao ◽  
Wenjie Zuo ◽  
...  

Rotary-wing unmanned aerial vehicles (UAVs) are widespread in both the military and civilian applications. However, there are still some problems for the UAV design such as the long design period, high manufacturing cost, and difficulty in maintenance. Therefore, this paper proposes a novel design method to obtain a lightweight and maintainable UAV frame from configurable design to detailed design. First, configurable design is implemented to determine the initial design domain of the UAV frame. Second, topology optimization method based on inertia relief theory is used to transform the initial geometric model into the UAV frame structure. Third, process design is considered to improve the manufacturability and maintainability of the UAV frame. Finally, dynamic drop test is used to validate the crashworthiness of the UAV frame. Therefore, a lightweight UAV frame structure composed of thin-walled parts can be obtained and the design period can be greatly reduced via the proposed method.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1825
Author(s):  
Caiyang Wei ◽  
Theo Hofman ◽  
Esin Ilhan Caarls

For an electric vehicle (EV) with a continuously variable transmission (CVT), a novel convex programming (CP)-based co-design method is proposed to minimize the total-cost-of-ownership (TCO). The integration of the electric machine (EM) and the CVT is the primary focus. The optimized system with co-design reduces the TCO by around 5.9% compared to a non-optimized CVT-based EV (based on off-the-shelf components) and by around 2% compared to the EV equipped with a single-speed transmission (SST). By taking advantage of the control and design freedom provided by the CVT, the optimal CVT, EM and battery sizes are found to reduce the system cost. It simultaneously finds the optimal CVT speed ratio and air-flow rate of the cooling system reducing the energy consumption. The strength of co-design is highlighted by comparing to a sequential design, and insights into the design of a low-power EV that is energy-efficient and cost-effective for urban driving are provided. A highly integrated EM-CVT system, which is efficient, low-cost and lightweight, can be expected for future EV applications.


2021 ◽  
Vol 143 (4) ◽  
Author(s):  
Erhan Yumuk ◽  
Müjde Güzelkaya ◽  
İbrahim Eksin

Abstract In this study, a novel design method for half-cycle and modified posicast controller structures is proposed for a class of the fractional order systems. In this method, all required design variable values, namely, the input step magnitudes and their application times are obtained as functions of fractional system parameters. Moreover, empirical formulas are obtained for the overshoot values of the compensated system with half-cycle and modified posicast controllers designed utilizing this method. The proposed design methodology has been tested via simulations and ball balancing real-time system. It is observed that the derived formulas are in coherence with outcomes of the simulation and real-time application. Furthermore, the performance of modified posicast controller designed using proposed method is much better than other posicast control method.


2018 ◽  
Vol 41 (6) ◽  
pp. 1761-1771 ◽  
Author(s):  
Baran Hekimoğlu

A novel design method, sine-cosine algorithm (SCA) is presented in this paper to determine optimum proportional-integral-derivative (PID) controller parameters of an automatic voltage regulator (AVR) system. The proposed approach is a simple yet effective algorithm that has balanced exploration and exploitation capabilities to search the solutions space effectively to find the best result. The simplicity of the algorithm provides fast and high-quality tuning of optimum PID controller parameters. The proposed SCA-PID controller is validated by using a time domain performance index. The proposed method was found efficient and robust in improving the transient response of AVR system compared with the PID controllers based on Ziegler-Nichols (ZN), differential evolution (DE), artificial bee colony (ABC) and bio-geography-based optimization (BBO) tuning methods.


2016 ◽  
Vol 715 ◽  
pp. 174-179 ◽  
Author(s):  
Chih Hsing Liu ◽  
Ying Chia Huang ◽  
Chen Hua Chiu ◽  
Yu Cheng Lai ◽  
Tzu Yang Pai

This paper presents the analysis methods for design of automotive bumper covers. The bumper covers are plastic structures attached to the front and rear ends of an automobile and are expected to absorb energy in a minor collision. One requirement in design of the bumper covers is to minimize the bumper deflection within a limited range under specific loadings at specific locations based on the design guideline. To investigate the stiffness performance under various loading conditions, a numerical model based on the explicit dynamic finite element analysis (FEA) using the commercial FEA solver, LS-DYNA, is developed to analyze the design. The experimental tests are also carried out to verify the numerical model. The thickness of the bumper cover is a design variable which usually varies from 3 to 4 mm depending on locations. To improve the stiffness of the bumper, an optimal design for the bumper under a pre-defined loading condition is identified by using the topology optimization approach, which is an optimal design method to obtain the optimal layout of an initial design domain under specific boundary conditions. The outcome of this study provides an efficient and cost-effective method to predict and improve the design of automotive bumper covers.


Sign in / Sign up

Export Citation Format

Share Document