Effect of locking mode on mechanical properties and failure behavior of CFRP/Al electromagnetic riveted joint

2021 ◽  
Vol 257 ◽  
pp. 113162 ◽  
Author(s):  
Hao Jiang ◽  
Chaochao Zeng ◽  
Guangyao Li ◽  
Junjia Cui

2015 ◽  
Vol 8 ◽  
pp. 1489-1497 ◽  
Author(s):  
Farizah Adliza Ghazali ◽  
◽  
Yupiter H.P. Manurung ◽  
Mohamed Ackiel Mohamed ◽  
Siti Khadijah Alias ◽  
...  


2017 ◽  
Vol 28 (7) ◽  
pp. 075704 ◽  
Author(s):  
V Sorkin ◽  
Y W Zhang


Scanning ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Deng-hao Ma ◽  
En-ze Jin ◽  
Jun-ping Li ◽  
Zhen-hua Hou ◽  
Jian Yin ◽  
...  

Continuous silicon carbide fiber-reinforced silicon carbide ceramic matrix composites (SiCf/SiC) are promising as thermal structural materials. In this work, the microstructure and static mechanical properties of 3D-SiCf/SiC with PyC, SiC, and PyC/SiC and without an interface prepared via polymer infiltration and pyrolysis (PIP) were investigated systematically in this paper. The results show that the microstructure and static mechanical properties of SiCf/SiC with an interphase layer were superior to the composites without an interlayer, and the interface debondings are existing in the composite without an interphase, resulting in a weak interface bonding. When the interphase is introduced, the interfacial shear strength is improved, the crack can be deflected, and the fracture energy can be absorbed. Meanwhile, the shear strength of the composites with PyC and PyC/SiC interfaces was 118 MPa and 124 MPa, respectively, and showing little difference in bending properties. This indicates that the sublayer SiC of the PyC/SiC multilayer interface limits the binding state and the plastic deformation of PyC interphase, and it is helpful to improve the mechanical properties of SiCf/SiC.



2020 ◽  
Vol 27 (10) ◽  
pp. 2945-2958
Author(s):  
Peng Xiao ◽  
Di-yuan Li ◽  
Guo-yan Zhao ◽  
Quan-qi Zhu ◽  
Huan-xin Liu ◽  
...  


2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Yizhe Chen ◽  
Yichun Wang ◽  
Hui Wang

Fiber metal laminate (FML) is a kind of lightweight material with excellent mechanical properties combining advantages of metal laminates and fiber reinforced composites. It has been widely used in the aerospace and transportation fields and is especially used as structural material such as aircraft skins, wings, and tails. However, under complex service conditions, interlaminar failure in FMLs greatly reduced mechanical properties of the material, even leading to serious economic and safety disasters. The failure and destruction of important structural parts of aircraft and other manned transportation vehicles are extremely unsafe for people. Therefore, it is of great significance to summarize the interlaminar failure behavior of FMLs and find ways to avoid these defects. This review paper is a collection of various researches done by many groups, which systematically discuss the interlaminar failure behaviors and their control methods of FMLs. The application status of several common FMLs in aircraft structures was given. The common interlaminar failure modes of FMLs and the testing and evaluation methods of interlaminar properties were stated. The failure mechanisms and the corresponding control methods were analyzed. Finally, the future developments of FMLs were also discussed by the authors. Through this review article, readers can obtain new research progress about the control method, the mechanism and future development on the failure behavior of FMLs in a more efficient way.



2012 ◽  
Vol 19 (2) ◽  
pp. 113-117 ◽  
Author(s):  
Yong Liu ◽  
Zhaofeng Chen ◽  
Jianxun Zhu ◽  
Yun Jiang ◽  
Binbin Li

Abstract(SiO2)f/SiO2 composites reinforced with three-dimensional (3D) six-directional preform were fabricated by the silicasol-infiltration-sintering method. The nominal fiber volume fraction was 47%. To characterize the mechanical properties of the composites, mechanical testing was carried out under various loading conditions, including tensile, flexural, and shear loading. The composite exhibited highly nonlinear stress-strain behavior under all the three types of loading. The results indicated that the 3D six-directional braided (SiO2)f/SiO2 composites exhibited superior flexural properties and good shear resistant as compared with other types of preform (2.5D and 3D four-directional)-reinforced (SiO2)f/SiO2 composites. 3D six-directional braided (SiO2)f/SiO2 composite exhibited graceful failure behavior under loading. The addition of 5th and 6th yarns resulted in controlled fracture and hence these 3D six-directional braided composites could possibly be suitable for thermal structure components.



Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2719
Author(s):  
Marissa A. Paglicawan ◽  
Carlo S. Emolaga ◽  
Johanna Marie B. Sudayon ◽  
Kenneth B. Tria

The application of natural fiber-reinforced composites is gaining interest in the automotive, aerospace, construction, and marine fields due to its advantages of being environmentally friendly and lightweight, having a low cost, and having a lower energy consumption during production. The incorporation of natural fibers with glass fiber hybrid composites may lead to some engineering and industrial applications. In this study, abaca/glass fiber composites were prepared using the vacuum-assisted resin transfer method (VARTM). The effect of different lamination stacking sequences of abaca–glass fibers on the tensile, flexural, and impact properties was evaluated. The morphological failure behavior of the fractured-tensile property was evaluated by 3D X-ray Computed Tomography and Scanning Electron Microscopy (SEM). The results of mechanical properties were mainly dependent on the volume fraction of abaca fibers, glass fibers, and the arrangement of stacking sequences in the laminates. The higher volume fraction of abaca fiber resulted in a decrease in mechanical properties causing fiber fracture, resin cracking, and fiber pullout due to poor bonding between the fibers and the matrix. The addition of glass woven roving in the composites increased the mechanical properties despite the occurrence of severe delamination between the abaca–strand mat glass fiber.



2021 ◽  
Vol 9 ◽  
Author(s):  
Xiaojian Cao ◽  
Han Zhang ◽  
Jun Yu ◽  
Tianchong Yu ◽  
Yuxing Qing

Determination of the mechanical properties of rock containing pre-existing cracks under tension condition is of great significance to understand the failure process of rock in engineering. This paper presents the experimental results of sandstone containing pre-existing cracks under Brazilian compression. The characteristics of the microcracks were analyzed by a scanning electron microscope. The results show that the rock containing pre-existing cracks has an obvious anisotropic characteristic. When the crack inclination is 45°, the rock has the minimum tensile strength and the weakest axial deformation resistance.



2021 ◽  
Vol 186 ◽  
pp. 110001 ◽  
Author(s):  
Emdadul Haque Chowdhury ◽  
Md. Habibur Rahman ◽  
Rahul Jayan ◽  
Md Mahbubul Islam


Sign in / Sign up

Export Citation Format

Share Document