Comparative study on fire resistance and zero strength layer thickness of CLT floor under natural fire and standard fire

2021 ◽  
Vol 302 ◽  
pp. 124368
Author(s):  
Zhiyan Xing ◽  
Yuexiang Wang ◽  
Jin Zhang ◽  
Hao Ma
2018 ◽  
Vol 196 ◽  
pp. 02011
Author(s):  
Nikolay Ilyin ◽  
Nadezhda Kondratyeva ◽  
Vasily Zaiko

The research recognizes the necessity of developing a new method of calculation of pipe-concrete columns fire-resistance. It is important for expending the area of their application in construction of buildings and structures; in unique structures as well. The authors apply a simplified mathematical description of the process of pipe-concrete columns resistance to the standard fire effect. This method helps to increase the accuracy of fire resistance level determination to expand these constructions use. If buildings materials are rationally combined, it is possible to produce reliable and sufficiently fireproof structures. Pipe-concrete columns which are, in fact, metal pipes filled with concrete can serve as an example of such structures. Nowadays, field tests are used to determine pipe-concrete constructions fire resistance. The authors introduce a methodology of theoretical determination of pipe-concrete columns fire resistance limit. The use of the proposed methodology makes it possible to reduce labor and economic costs while determining buildings resistance with the use of the pipe-concrete. It opens a possibility of pipe-concrete structures reasonable application in construction practice. The use of this new method allows us to determine pipe-concrete columns fire resistance without resorting to natural fire. It also increases the accuracy of statistical quality control and non-destructive tests. The calculations made in this study as well as previous tests conducted by other researches prove that there is no need for additional fire protection of pipe-concrete columns.


Author(s):  
Patrick Meyer ◽  
Peter Schaumann ◽  
Martin Mensinger ◽  
Suet Kwan Koh

In Germany, regulations for hollow spaces in slab systems require 30 minutes standard fire resistance of the load-bearing steel construction. Within a current national research project a natural fire scenario for the hollow space was developed based on realistic fire loads and ventilation conditions in the hollow space. Assuming this realistic fire scenario in the hollow space, two large scale tests on an innovative composite floor system were performed to evaluate the influence on the load bearing behaviour of the floor system. The integrated and sustainable composite floor system consists of a prestressed concrete slab, an unprotected, bisected hot rolled I-profile with composite dowels either in puzzle or clothoidal shape, and removable floor panels on the top of the I-profile. This floor system ensures the opportunity to adjust the technical building installations in accordance with the use of the building. This integrated and sustainable composite floor system was developed in several research projects. The standard fire resistance R90 for the fire scenario below the slab system has already been proven successfully. In this paper, experimental investigations regarding the heating and load bearing behaviour of the innovative composite floor system under the newly developed natural fire scenario of hollow spaces are presented. In doing so, the special test set-up to realise the fire tests for the fire scenario hollow space will be described in detail. After the fire scenario for the hollow space, the specimen was subjected to the ISO standard fire curve to establish the failure temperature of the unprotected I-profile. In addition to the temperature development and the load bearing behaviour inside the innovative floor during the heating phase, the cooling phase and the influence of a web opening on the load bearing behaviour will be discussed.


2021 ◽  
Vol 11 (6) ◽  
pp. 2521
Author(s):  
Feng Jiang ◽  
Jianyong Liu ◽  
Wei Yuan ◽  
Jianbo Yan ◽  
Lin Wang ◽  
...  

Improving the fire resistance of the key cables connected to firefighting and safety equipment is of great importance. Based on the engineering practice of an oil storage company, this study proposes a modification scheme that entails spraying fire-retardant coatings on the outer surface of a cable tray to delay the failure times of the cables in the tray. To verify the effect, 12 specimens were processed using five kinds of fire-retardant coatings and two kinds of fire-resistant cotton to coat the cable tray. The specimens were installed in the vertical fire resistance test furnace. For the ISO 834 standard fire condition, a fire resistance test was carried out on the specimens. The data for the surface temperature and the insulation resistance of the cables in trays were collected, and the fireproof effect was analyzed. The results showed that compared with the control group, the failure time of the cable could be delayed by 1.57–14.86 times, and the thicker the fire-retardant coatings were, the better the fireproof effect was. In general, the fire protection effect of the fire-retardant coating was better than that of the fire-resistant cotton.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Lisa Choe ◽  
Selvarajah Ramesh ◽  
Xu Dai ◽  
Matthew Hoehler ◽  
Matthew Bundy

PurposeThe purpose of this paper is to report the first of four planned fire experiments on the 9.1 × 6.1 m steel composite floor assembly as part of the two-story steel framed building constructed at the National Fire Research Laboratory.Design/methodology/approachThe fire experiment was aimed to quantify the fire resistance and behavior of full-scale steel–concrete composite floor systems commonly built in the USA. The test floor assembly, designed and constructed for the 2-h fire resistance rating, was tested to failure under a natural gas fueled compartment fire and simultaneously applied mechanical loads.FindingsAlthough the protected steel beams and girders achieved matching or superior performance compared to the prescribed limits of temperatures and displacements used in standard fire testing, the composite slab developed a central breach approximately at a half of the specified rating period. A minimum area of the shrinkage reinforcement (60 mm2/m) currently permitted in the US construction practice may be insufficient to maintain structural integrity of a full-scale composite floor system under the 2-h standard fire exposure.Originality/valueThis work was the first-of-kind fire experiment conducted in the USA to study the full system-level structural performance of a composite floor system subjected to compartment fire using natural gas as fuel to mimic a standard fire environment.


2004 ◽  
Vol 22 (6) ◽  
pp. 449-471 ◽  
Author(s):  
Joo-Saeng Park ◽  
Jun-Jae Lee

2013 ◽  
Vol 62 (1) ◽  
Author(s):  
Md Azree Othuman Mydin

Drywall is a widespread fire barrier used in house and general building construction. Drywall partitions and ceiling membranes are possibly the most common fire resistant construction approach employed in an extensive range of building types. The utilization of drywall board as prime fire protection of light-flame wood or steel construction is ubiquitous. Drywall board based systems are among those now broadly used, as walls or ceilings and it is principally employed as lining material in light-weight construction, which is a competent and cost effective technique of providing flexible partitioning assemblies in commercial and residential buildings. The thickness of the drywall board lining and the configuration of the framing can be flexibly changed to meet specified fire performance requirements. The use of such systems is increasing every day and there demands to be more research on their properties and behaviour. This paper will presents the properties of drywall board which will includes the assemblies and standard fire tests and the thermal properties of drywall in general and includes suggested properties of drywall by different researchers. Drywall boards shrink and crack at high temperatures, and this leads to collapse of parts of the drywall boards in fire. Fall-off of gypsum in fire affects the fire resistance of the assembly considerably, and cannot be overlooked when evaluating the fire resistance of drywall assemblies


Author(s):  
Michal Malendowski ◽  
Adam Glema ◽  
Wojciech Szymkuc

In this paper, the main emphasis is put into showing differences between standard fire design of structural elements and performance based approach, that takes into account analysis of structure under natural fire. The exemplary structure is a 3-bay 65,0x110,0 m in plane and 22,0 m high industrial hall with heavy cranes. Because of the significant volume with respect to fire load, there is a low probability that the fully developed fire can occur, nonetheless regarding technological process, a significant local fire could take place and affect the neighbour structure. The most complex approach used in this work is based on coupled CFD-FEM analysis of influence of local fire onto structure.Fire exposure of structural elements is calculated by the coupling scripts, taking into account real heat exposure of section by using adiabatic surface temperature approach.


Sign in / Sign up

Export Citation Format

Share Document