Investigating the mechanical performance of nano additives reinforced high-performance concrete

2022 ◽  
Vol 320 ◽  
pp. 125537
Author(s):  
M.M. Mokhtar ◽  
M. Morsy ◽  
N.A. Taha ◽  
Emad M. Ahmed
Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3781
Author(s):  
Tianyu Wang ◽  
Yahong Zhao ◽  
Baosong Ma ◽  
Cong Zeng

The acid–alkaline-inducd corrosive environments inside wastewater concrete pipelines cause concrete structural deterioration and substantial economic losses all over the world. High-performance concrete/mortar (HPC) was designed to have better resistance to corrosive environments, with enhanced service life. However, the durability of HPC in wastewater pipeline environments has rarely been studied. A high-performance mortar mixture (M) reinforced by supplemental materials (including fly ash and silica fume) and polyvinyl alcohol (PVA) fibers, together with a mortar mixture (P) consisting of cement, sand and water with similar mechanical performance, were both designed and exposed to simulated wastewater pipeline environments. The visual appearance, dimensional variation, mass loss, mechanical properties, permeable pore volume, and microstructure of the specimens were measured during the corrosion cycles. More severe deterioration was observed when the alkaline environment was introduced into the corrosion cycles. Test results showed that the M specimens had less permeable pore volume, better dimensional stability, and denser microstructure than the P specimens under acid–alkaline-induced corrosive environments. The mass-loss rates of the M specimens were 66.1–77.2% of the P specimens after 12 corrosion cycles. The compressive strength of the M specimens was 25.5–37.3% higher than the P specimens after 12 cycles under corrosive environments. Hence, the high-performance mortar examined in this study was considered superior to traditional cementitious materials for wastewater pipeline construction and rehabilitation.


2016 ◽  
Vol 711 ◽  
pp. 1027-1034 ◽  
Author(s):  
Adriano Reggia ◽  
Sara Sgobba ◽  
Fabio Macobatti ◽  
Cristina Zanotti ◽  
Fausto Minelli ◽  
...  

After more than fifty years from the opening of the largely discussed “Autostrada del Sole” Highway in 1964, the infrastructure system in Italy appears marked by the passing of time, similarly to what observed in several other countries worldwide. The great heterogeneity of the Italian landscape has determined a great variety of construction types, such as large span concrete bridges over the northern rivers and large arch concrete bridges over the valleys of the central region. Increment of vehicle traffic and new seismic regulations are setting new requirements to adapt the existing infrastructure, which should be otherwise replaced. Moreover, reinforced concrete (RC) aging and deterioration have led to structural and material degradation, including severe cracking and corrosion. Specialized materials such as High Performance Concrete (HPC) could represent a viable convenient solution for repairing, strengthening and retrofitting of RC structures as both structural capacity and durability can be refurbished. However, alongside high mechanical performance, HPC is characterized by a high cracking sensitivity at very early age, due to its high stiffness and shrinkage. Restrained shrinkage cracking, particularly significant in repaired structures where the existing concrete generates a considerable restraint against the free movement of the repair material, may represent a limit to the effective application of these materials. For this reason, shrinkage compatibility of HPC with the existing concrete substrate needs to be experimentally and numerically assessed. A study is herein presented where, based on experimental tests, different numerical models are developed and compared to assess and eventually minimize the risk of shrinkage cracking in bridge piers strengthened with HPC.


Author(s):  
Arezki Tagnit-Hamou ◽  
Nancy A. Soliman

This paper presents research work on the development of a green type of ultra-high-performance concrete using ground glass powders with different degrees of fineness (UHPGC). This article presents the development of an innovative, low-cost, and sustainable UHPGC through the use of glass powder to replace cement, and quartz powder particles. An UHPGC with a compressive strength (fc) of up to 220 MPa was prepared and its fresh, and mechanical properties were investigated. The test results indicate that the fresh UHPGC properties were improved when the cement and quartz powder were replaced with non-absorptive glass powder particles. The strength improvement can be attributed to the glass powder’s pozzolanicity and to its mechanical performance (very high strength and elastic modulus of glass). A case study of using this UHPGC is presented through the design and construction of a footbridge. Erection of footbridge at University of Sherbrooke Campus using UHPGC is also presented as a full-scale application.


2014 ◽  
Vol 627 ◽  
pp. 445-448 ◽  
Author(s):  
Young Il Jang ◽  
Wan Shin Park ◽  
Sun Woong Kim ◽  
Song Hui Yun ◽  
Hyun Do Yun ◽  
...  

This paper addresses the influence of cold weather on the compressive strength of high performance concrete with silica fume under different curing days. Test variables of this study are weather condition (5°C, -5°C and-15°C) and different curing days (7days and 28 days). In this work, the specimen was designed a water-binder ratio of 0.34. One batches of concrete were prepared for each mixing hour, and the compressive strength of cylindrical concrete specimens was measured after 7 and 28 days. Test results for concrete compressive strength show that the concrete’s best mechanical performance occurred when there was the least difference between ambient temperature and concrete temperature, that is, during the later hours of the day in hot weather conditions.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Yongtao Zhang ◽  
Hehui Zheng ◽  
Minghao Tang ◽  
Zhiqi He

This article develops an enhanced UHPC-grout shear connection for steel-concrete composite bridges with precast decks. The primary improvement is the use of ultra-high performance concrete (UHPC) as the connection grout. To validate the constructability and the mechanical performance of the new connection, two series of experimental tests (including grouting tests and push-out tests) were conducted. Results from the grouting tests show that both the pressure grouting method and the self-levelling grouting method are applicable to inject the UHPC grout into the channel void of the connection. Results from the push-out tests indicate that the advanced properties of UHPC allow for a significant improvement of the shear resistance of the adhesive connection over traditional cementitious grouts. The ultimate shear capacity of the adhesive connection is controlled by the interface shear strength between the embossed steel and the UHPC grout, with a cohesion value of approximately 5.87 MPa. Meanwhile, the residual frictional resistance can be taken as approximately one-half of the ultimate resistance. The results of the finite-element analysis show that the trilinear model is reasonable to simulate the shear-slip laws of the embossed steel-grout interface and the rough concrete-grout interface.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Meimei Song ◽  
Chuanlin Wang ◽  
Ying Cui ◽  
Qiu Li ◽  
Zhiyang Gao

High autogenous shrinkage property is one of the disadvantages of ultra-high-performance concrete (UHPC), which may induce early age cracking and threaten the safety of concrete structure. In the present study, different dosages of calcium sulfoaluminate (CSA) cement were added in UHPC as an effective expansive binder. Hydration mechanism, autogenous shrinkage property, and compressive strength of UHPC were carried out to investigate the effect of CSA addition on the mechanical properties of UHPC. Scanning electron microscopy was also employed to characterize the intrinsic microstructural reasons relating to the changes in macroproperties. Based on the XRD diagram, increasing formation of ettringite and Ca(OH)2 can be found with increasing CSA content up to 15%. In the heat flow results of UHPC with 10% CSA addition, the maximum heat release increases to 2.6 mW/g, which is 8.3% higher than the reference UHPC, suggesting a higher degree of hydration with CSA addition. The results in autogenous shrinkage show that CSA expansion agent plays a significantly beneficial role in improving the autogenous shrinkage of UHPC. The corresponding autogenous shrinkage of UHPC is −59.66 μ ε , −131.11 μ ε , and −182.31 μ ε , respectively, at 7 d with 5%, 10%, and 15% addition, which is 108%, 117%, and 123% reduction compared to the reference specimen without CSA. In terms of compressive strength, UHPC with 5%, 10%, 15%, and 20% CSA addition has 10.5%, 17.4%, 30.2%, and 22.1% higher compressive strength than that for the reference UHPC at 28 d. Microstructural study shows that there is an extremely dense microstructure in both the bulk matrix and interfacial transition zone of UHPC with 10% CSA addition, which can be attributed to the higher autogenous shrinkage property and can therefore result in higher mechanical performance.


Author(s):  
Elsy Y. Flores ◽  
Jordan Varbel ◽  
William K. Toledo ◽  
Craig M. Newtson ◽  
Brad D. Weldon

This research investigated the use of locally produced, non-proprietary ultra-high-performance concrete (UHPC) as a grouting material to repair deteriorated shear keys. Shear keys are used in adjacent girder superstructures to produce monolithic behavior and load transfer across the structure. Shear key degradation can jeopardize the integrity of the structure. Transportation agencies have reported that 75% of distress in adjacent girder bridges is because of cracking and de-bonding along shear keys. Previous research has shown that locally produced UHPC has excellent mechanical and durability properties. UHPC has also been shown to have good bonding characteristics that are desirable in a potential grouting material. Bond strength between UHPC grout and substrate concrete was evaluated using slant-shear and direct tension tests. Results showed that adequate bond was achieved at 7 days. Low strengths at 28 days were observed because of low strength of the substrate concrete. Shrinkage of UHPC grout was also investigated. Shrinkage at 28 days was less than 600 µstrain which is acceptable for repair practices. Full-scale testing was used to evaluate load-deflection behavior of channel girder assemblages with grouted shear keys. Results showed that UHPC grout and non-shrink grout had similar mechanical performance. Excellent bond was achieved with all grouts, even with minimal surface preparation. The similar performances of the non-shrink grout and the UHPC grout indicates that UHPC grout does not provide a mechanical benefit over the non-shrink grout.


2019 ◽  
Vol 25 (3) ◽  
pp. 601-616 ◽  
Author(s):  
Diogo Pedro ◽  
Mafalda Guedes ◽  
Jorge de Brito ◽  
Luís Evangelista

AbstractThe use of concrete-recycled aggregates to produce high-performance concrete is limited by insufficient correlation between resulting microstructure and its influence on mechanical performance reproducibility. This work addresses this issue in a sequential approach: concrete microstructure was systematically analyzed and characterized by scanning electron microscopy and results were correlated with concrete compressive strength and water absorption ability. The influence of replacing natural aggregates (NA) with recycled concrete aggregates (RCA), with different source concrete strength levels, of silica fume (SF) addition and of mixing procedure was tested. The results show that the developed microstructure depends on the concrete composition and is conditioned by the distinct nature of NA, recycled aggregates from high-strength source concrete, and recycled aggregates from low-strength source concrete. SF was only effective at concrete densification when a two-stage mixing approach was used. The highest achieved strength in concrete with 100% incorporation of RCA was 97.3 MPa, comparable to that of conventional high-strength concrete with NA. This shows that incorporation of significant amounts of RCA replacing NA in concrete is not only a realistic approach to current environmental goals, but also a viable route for the production of high-performance concrete.


2013 ◽  
Vol 787 ◽  
pp. 413-416
Author(s):  
Ji Xiang Gao ◽  
Peng Zhang ◽  
Xiao Bing Dai

As a kind of high performance concrete material in the construction of structure engineering, the concrete containing nanoparticles has been paid more and more attention to and used in the field of high and long span buildings because of good mechanical performance and durability performance. In order to in-depth understand the characteristic of the concrete containing nanoparticles and promote the application of the concrete containing nanoparticles in practical engineering, a series of research works on the mechanical properties and durability of the concrete containing nanoparticles were summarized based on the current study results. Furthermore, the research trend of the concrete containing nanoparticles was presented.


Sign in / Sign up

Export Citation Format

Share Document