scholarly journals Characterization of a novel Lbx1 mouse loss of function strain

2021 ◽  
Author(s):  
Lyvianne Decourtye ◽  
Jeremy A. McCallum-Loudeac ◽  
Sylvia Zellhuber-McMillan ◽  
Emma Young ◽  
Kathleen J. Sircombe ◽  
...  
Keyword(s):  
Genetics ◽  
2002 ◽  
Vol 161 (1) ◽  
pp. 133-142 ◽  
Author(s):  
Celine Moorman ◽  
Ronald H A Plasterk

AbstractThe sgs-1 (suppressor of activated Gαs) gene encodes one of the four adenylyl cyclases in the nematode C. elegans and is most similar to mammalian adenylyl cyclase type IX. We isolated a complete loss-of-function mutation in sgs-1 and found it to result in animals with retarded development that arrest in variable larval stages. sgs-1 mutant animals exhibit lethargic movement and pharyngeal pumping and (while not reaching adulthood) have a mean life span that is >50% extended compared to wild type. An extensive set of reduction-of-function mutations in sgs-1 was isolated in a screen for suppressors of a neuronal degeneration phenotype induced by the expression of a constitutively active version of the heterotrimeric Gαs subunit of C. elegans. Although most of these mutations change conserved residues within the catalytic domains of sgs-1, mutations in the less-conserved transmembrane domains are also found. The sgs-1 reduction-of-function mutants are viable and have reduced locomotion rates, but do not show defects in pharyngeal pumping or life span.


Genetics ◽  
1998 ◽  
Vol 150 (1) ◽  
pp. 119-128
Author(s):  
M Rhys Dow ◽  
Paul E Mains

Abstract We have previously described the gene mei-1, which encodes an essential component of the Caenorhabditis elegans meiotic spindle. When ectopically expressed after the completion of meiosis, mei-1 protein disrupts the function of the mitotic cleavage spindles. In this article, we describe the cloning and the further genetic characterization of mel-26, a postmeiotic negative regulator of mei-1. mel-26 was originally identified by a gain-of-function mutation. We have reverted this mutation to a loss-of-function allele, which has recessive phenotypes identical to the dominant defects of its gain-of-function parent. Both the dominant and recessive mutations of mel-26 result in mei-1 protein ectopically localized in mitotic spindles and centrosomes, leading to small and misoriented cleavage spindles. The loss-of-function mutation was used to clone mel-26 by transformation rescue. As suggested by genetic results indicating that mel-26 is required only maternally, mel-26 mRNA was expressed predominantly in the female germline. The gene encodes a protein that includes the BTB motif, which is thought to play a role in protein-protein interactions.


1996 ◽  
Vol 16 (5) ◽  
pp. 1966-1977 ◽  
Author(s):  
T Dick ◽  
K Ray ◽  
H K Salz ◽  
W Chia

We report the molecular and genetic characterization of the cytoplasmic dynein light-chain gene, ddlc1, from Drosophila melanogaster. ddlc1 encodes the first cytoplasmic dynein light chain identified, and its genetic analysis represents the first in vivo characterization of cytoplasmic dynein function in higher eucaryotes. The ddlc1 gene maps to 4E1-2 and encodes an 89-amino-acid polypeptide with a high similarity to the axonemal 8-kDa outer-arm dynein light chain from Chlamydomonas flagella. Developmental Northern (RNA) blot analysis and ovary and embryo RNA in situ hybridizations indicate that the ddlc1 gene is expressed ubiquitously. Anti-DDLC1 antibody analyses show that the DDLC1 protein is localized in the cytoplasm. P-element-induced partial-loss-of-function mutations cause pleiotropic morphogenetic defects in bristle and wing development, as well as in oogenesis, and hence result in female sterility. The morphological abnormalities found in the ovaries are always associated with a loss of cellular shape and structure, as visualized by a disorganization of the actin cytoskeleton. Total-loss-of-function mutations cause lethality. A large proportion of mutant animals degenerate during embryogenesis, and the dying cells show morphological changes characteristic of apoptosis, namely, cell and nuclear condensation and fragmentation, as well as DNA degradation. Cloning of the human homolog of the ddlc1 gene, hdlc1, demonstrates that the dynein light-chain 1 is highly conserved in flies and humans. Northern blot analysis and epitope tagging show that the hdlc1 gene is ubiquitously expressed and that the human dynein light chain 1 is localized in the cytoplasm. hdlc1 maps to 14q24.


Genetics ◽  
1995 ◽  
Vol 140 (1) ◽  
pp. 219-229 ◽  
Author(s):  
G K Yasuda ◽  
G Schubiger ◽  
B T Wakimoto

Abstract The vast majority of known male sterile mutants of Drosophila melanogaster fail to produce mature sperm or mate properly. The ms(3) K81(1) mutation is one of a rare class of male sterile mutations in which sterility is caused by developmental arrest after sperm entry into the egg. Previous studies showed that males homozygous for the K81(1) mutation produce progeny that arrest at either of two developmental stages. Most embryos arrest during early nuclear cycles, whereas the remainder are haploid embryos that arrest at a later stage. This description of the mutant phenotype was based on the analysis of a single allele isolated from a natural population. It was therefore unclear whether this unique paternal effect phenotype reflected the normal function of the gene. The genetic analysis and initial molecular characterization of five new K81 mutations are described here. Hemizygous conditions and heteroallelic combinations of the alleles were associated with male sterility caused by defects in embryogenesis. No other mutant phenotypes were observed. Thus, the K81 gene acted as a strict paternal effect gene. Moreover, the biphasic pattern of developmental arrest was common to all the alleles. These findings strongly suggested that the unusual embryonic phenotype caused by all five new alleles was due to loss of function of the K81+ gene. The K81 gene is therefore the first clear example of a strict paternal effect gene in Drosophila. Based on the embryonic lethal phenotypes, we suggest that the K81+ gene encodes a sperm-specific product that is essential for the male pronucleus to participate in the first few embryonic nuclear divisions.


Development ◽  
1997 ◽  
Vol 124 (1) ◽  
pp. 181-193 ◽  
Author(s):  
D.J. Andrew ◽  
A. Baig ◽  
P. Bhanot ◽  
S.M. Smolik ◽  
K.D. Henderson

We report on the characterization of the first loss-of-function mutation in a Drosophila CREB gene, dCREB-A. In the epidermis, dCREB-A is required for patterning cuticular structures on both dorsal and ventral surfaces since dCREB-A mutant larvae have only lateral structures around the entire circumference of each segment. Based on results from epistasis tests with known dorsal/ventral patterning genes, we propose that dCREB-A encodes a transcription factor that functions near the end of both the DPP- and SPI-signaling cascades to translate the corresponding extracellular signals into changes in gene expression. The lateralizing phenotype of dCREB-A mutants reveals a much broader function for CREB proteins than previously thought.


2018 ◽  
Vol 19 (10) ◽  
pp. 3099 ◽  
Author(s):  
Anna Malekkou ◽  
Maura Samarani ◽  
Anthi Drousiotou ◽  
Christina Votsi ◽  
Sandro Sonnino ◽  
...  

The GBA2 gene encodes the non-lysosomal glucosylceramidase (NLGase), an enzyme that catalyzes the conversion of glucosylceramide (GlcCer) to ceramide and glucose. Mutations in GBA2 have been associated with the development of neurological disorders such as autosomal recessive cerebellar ataxia, hereditary spastic paraplegia, and Marinesco-Sjogren-Like Syndrome. Our group has previously identified the GBA2 c.1780G>C [p.Asp594His] missense mutation, in a Cypriot consanguineous family with spastic ataxia. In this study, we carried out a biochemical characterization of lymphoblastoid cell lines (LCLs) derived from three patients of this family. We found that the mutation strongly reduce NLGase activity both intracellularly and at the plasma membrane level. Additionally, we observed a two-fold increase of GlcCer content in LCLs derived from patients compared to controls, with the C16 lipid being the most abundant GlcCer species. Moreover, we showed that there is an apparent compensatory effect between NLGase and the lysosomal glucosylceramidase (GCase), since we found that the activity of GCase was three-fold higher in LCLs derived from patients compared to controls. We conclude that the c.1780G>C mutation results in NLGase loss of function with abolishment of the enzymatic activity and accumulation of GlcCer accompanied by a compensatory increase in GCase.


2017 ◽  
Vol 173 (10) ◽  
pp. 2680-2689 ◽  
Author(s):  
Magalie S. Leduc ◽  
Hsiao-Tuan Chao ◽  
Chunjing Qu ◽  
Magdalena Walkiewicz ◽  
Rui Xiao ◽  
...  

2021 ◽  
Author(s):  
Danielle M Caefer ◽  
Nhat Q Phan ◽  
Jennifer C Liddle ◽  
Jeremy L Balsbaugh ◽  
Joseph P O’Shea ◽  
...  

AbstractOkur-Chung Neurodevelopmental Syndrome (OCNDS) is caused by heterozygous mutations to the CSNK2A1 gene, which encodes the alpha subunit of casein kinase II (CK2). The most frequently occurring mutation is lysine 198 to arginine (K198R). To investigate the impact of this mutation, we first generated a high-resolution phosphorylation motif of CK2WT, including the first characterization of specificity for tyrosine phosphorylation activity. A second high resolution motif representing CK2K198R substrate specificity was also generated. Here we report for the first time the impact of the OCNDS associated CK2K198R mutation. Contrary to prior speculation, the mutation does not result in a loss of function, but rather shifts the substrate specificity of the kinase. Broadly speaking the mutation leads to 1) a decreased preference for acidic residues in the +1 position, 2) a decreased preference for threonine phosphorylation, 3) an increased preference for tyrosine phosphorylation, and 4) an alteration of the tyrosine phosphorylation specificity motif. To further investigate the result of this mutation we have developed a probability-based scoring method, allowing us to predict shifts in phosphorylation in the K198R mutant relative to the wild type kinase. As an initial step we have applied the methodology to the set of axonally localized ion channels in an effort to uncover potential alterations of the phosphoproteome associated with the OCNDS disease condition.


Sign in / Sign up

Export Citation Format

Share Document