scholarly journals Identification of receptors for eight endocrine disrupting chemicals and their underlying mechanisms using zebrafish as a model organism

2020 ◽  
Vol 204 ◽  
pp. 111068
Author(s):  
Wenhao Huang ◽  
Weiming Ai ◽  
Weiwei Lin ◽  
Fang Fang ◽  
Xuedong Wang ◽  
...  
2016 ◽  
Vol 78 (5) ◽  
pp. 410-416 ◽  
Author(s):  
Scott Layton ◽  
Jason Belden

Engaging students in the process of science to increase learning and critical thinking has become a key emphasis in undergraduate education. Introducing environmental topics, such as the effects of endocrine-disrupting chemicals, into undergraduate courses offers a new means to increase student engagement. Daphnia magna can serve as a model organism for endocrine disruption, and its ease of handling, rapid reproduction rate, and clearly defined endpoints make it useful in short-term, student research projects. The concept of endocrine disruption can be tested through a 21-day reproductive study of D. magna exposed to varying concentrations of the pesticide fenoxycarb. Students will observe an altered reproduction rate and increased production of males under conditions that would typically result only in the production of female offspring. This research system allows students to formulate hypotheses, set up experiments, analyze data, and present results, leading to a greater appreciation of and interest in science.


2021 ◽  
Author(s):  
Archisman Mahapatra ◽  
Priya Gupta ◽  
Anjali Suman ◽  
Rahul Kumar Singh

Obesity is an alarming public health concern that contributes to a substantially increased risk of multiple chronic disorders, including diabetes. As per WHO data, in 2016, almost 39% adult population of the world is overweight, 13% of them were obese. There is prominent evidence on the involvement of environmental endocrine-disrupting chemicals, termed obesogens, in the prevalence of this growing worldwide pandemic, obesity. The exaggerated effect of obesogens on endocrine disruption, lipid metabolism and homeostasis, adipocyte functioning, impaired thermogenesis, inflammation, epigenetics, and overall human health will be covered in this chapter. This chapter will discuss the environmental obesogen hypothesis, the epidemiological and experimental evidence of obesogens, its chemical characteristics, and possible mechanism of actions. It will also focus on some recent indications of obesogens and their correlation in COVID-19 disease pathogenesis. This chapter will try to conclude with strategies for identifying the underlying mechanisms of obesogens within model systems and the human body, including future directions.


2015 ◽  
Vol 46 (1) ◽  
pp. 7-20 ◽  
Author(s):  
I. Weingartová ◽  
M. Dvořáková ◽  
J. Nevoral ◽  
A. Vyskočilová ◽  
M. Sedmíková ◽  
...  

Abstract The progress of reproductive biotechnology is dependent on the amount, quality, and availability of female gametes – oocytes. The proper selection of a suitable model organism is vital to ensure effective research of the signal pathways that regulate oogenesis and meiotic maturation. Many factors are involved in meiosis regulation and some of them are evolutionarily conserved. Xenopus laevis is a traditional model for cell cycle research, which has become a background for a more detailed study of models that are similar to humans. In contrast to mammalian models, water-living vertebrates are appropriate models for studying effects of environmentally occurring pollutants such as endocrine-disrupting chemicals (EDCs). The triploid gynogenetic Prussian carp is a unique biological model for reproduction studies. The ability of clone production in combination with alternative sexual mode of reproduction brings advantages for the testing of sensitiveness to the effects of EDCs in terms of studying the alternative molecular pathways in meiosis regulations. The aim of this review is to compare meiosis regulating pathways among various animal models, and to suggest the possible utilization of these models in researching EDCs. A comparison of the currently recognized oocyte signalization and the endocrine disruptor effect points out the need for their molecular target identification and introduces some in water living vertebrates as suitable study models.


2021 ◽  
Vol 43 (1) ◽  
Author(s):  
Xuejie Qi ◽  
Xiao Geng ◽  
Juan Zhang ◽  
Binpeng Qu ◽  
Xin Zhang ◽  
...  

Abstract Background Increasing evidence suggested N6-methyladenosine (m6A) modification is crucial for male germline development. However, m6A modification of lncRNAs gains a little attention in amphibians in recent years. Xenopus laevis (X. laevis) was chosen to be an ideal model organism for testing environmental endocrine disrupting chemicals (EDCs) exposure and resultant effects. Atrazine (AZ) as an endocrine disrupt can effect development of testis in amphibians. Our previous study revealed that m6A is a highly conserved modification across the species. Results The results of m6A sequences showed that m6A-methylated lncRNAs enriched in intergenic region in testes of X. laevis. We further examined the differential expression of lncRNAs m6A sites in testes of AZ-exposed and compared with that in animals from control group. The results indicated that up to 198 differentially methylated m6A sites were detected within 188 lncRNAs, in which 89 significantly up-methylated sites and 109 significantly down-methylated sites. Data from KEGG pathway analysis indicated that AZ-affected lncRNAs m6A sites were mainly involved in 10 pathways in which 3 mutual pathways were found in the result of differentially m6A-methylated mRNAs. Conclusions These findings suggested that differentially m6A-methylated lncRNAs and these 3 pathways may act on regulatory roles in abnormal testis development of AZ-exposed X. laevis. This study for the first time provides insights into the profile of lncRNAs m6A modifications in amphibian species.


2005 ◽  
Vol 40 (4) ◽  
pp. 484-490 ◽  
Author(s):  
Keun J. Choi ◽  
Sang G. Kim ◽  
Chang W. Kim ◽  
Seung H. Kim

Abstract This study examined the effect of polyphosphate on removal of endocrine-disrupting chemicals (EDCs) such as nonylphenol and bisphenol-A by activated carbons. It was found that polyphosphate aided in the removal of nonylphenol and bisphenol- A. Polyphosphate reacted with nonylphenol, likely through dipole-dipole interaction, which then improved the nonylphenol removal. Calcium interfered with this reaction by causing competition. It was found that polyphosphate could accumulate on carbon while treating a river. The accumulated polyphosphate then aided nonylphenol removal. The extent of accumulation was dependent on the type of carbon. The accumulation occurred more extensively with the wood-based used carbon than with the coal-based used carbon due to the surface charge of the carbon. The negatively charged wood-based carbon attracted the positively charged calcium-polyphosphate complex more strongly than the uncharged coal-based carbon. The polyphosphate-coated activated carbon was also effective in nonylphenol removal. The effect was different depending on the type of carbon. Polyphosphate readily attached onto the wood-based carbon due to its high affinity for polyphosphate. The attached polyphosphate then improved the nonylphenol removal. However, the coating failed to attach polyphosphate onto the coal-based carbon. The nonylphenol removal performance of the coal-based carbon remained unchanged after the polyphosphate coating.


2019 ◽  
Vol 3 ◽  
pp. 27
Author(s):  
Bellavia A ◽  
Mínguez-Alarcón L ◽  
Ford J ◽  
Keller M ◽  
Petrozza J ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document