scholarly journals Future changes in snowpack will impact seasonal runoff and low flows in Czechia

2021 ◽  
Vol 37 ◽  
pp. 100899
Author(s):  
Michal Jenicek ◽  
Jan Hnilica ◽  
Ondrej Nedelcev ◽  
Vaclav Sipek
Keyword(s):  
2013 ◽  
Vol 10 (1) ◽  
pp. 449-485 ◽  
Author(s):  
A. Viglione ◽  
J. Parajka ◽  
M. Rogger ◽  
J. L. Salinas ◽  
G. Laaha ◽  
...  

Abstract. In a three-part paper we assess the performance of runoff predictions in ungauged basins in a comparative way. While Parajka et al. (2013) and Salinas et al. (2013) assess the regionalisation of hydrographs and hydrological extremes through a literature review, in this paper we assess prediction of a range of runoff signatures for a consistent dataset. Daily runoff time series are predicted for 213 catchments in Austria by a regionalised rainfall–runoff model and by Top-Kriging, a geostatistical interpolation method that accounts for the river network hierarchy. From the runoff timeseries, six runoff signatures are extracted: annual runoff, seasonal runoff, flow duration curves, low flows, high flows and runoff hydrograph. The predictive performance is assessed by the bias, error spread and proportion of unexplained spatial variance of statistical measures of these signatures in cross-validation mode. Results of the comparative assessment show that the geostatistical approach (Top-Kriging) generally outperforms the regionalised rainfall–runoff model. The predictive performance increases with catchment area for both methods and all signatures, while the dependence on climate characteristics is weaker. Annual and seasonal runoff can be predicted more accurately than all other signatures. The spatial variability of high flows is the most difficult to capture followed by the low flows. The relative predictive performance of the signatures depends on the selected performance measures. It is therefore essential to report performance in a consistent way by more than one performance measure.


2020 ◽  
Vol 24 (7) ◽  
pp. 3475-3491 ◽  
Author(s):  
Michal Jenicek ◽  
Ondrej Ledvinka

Abstract. The streamflow seasonality in mountain catchments is often influenced by snow. However, a shift from snowfall to rain is expected in the future. Consequently, a decrease in snow storage and earlier snowmelt is predicted, which will cause changes not only in seasonal runoff distribution in snow-dominated catchments, but it may also affect the total annual runoff. The objectives of this study were to quantify (1) how inter-annual variations in snow storages affect spring and summer runoff, including summer low flows, and (2) the importance of snowmelt in generating runoff compared to rainfall. The snow storage, groundwater recharge and streamflow were simulated for 59 mountain catchments in Czechia in the period from 1980 to 2014 using a bucket-type catchment model. The model output was evaluated against observed daily runoff and snow water equivalent. Hypothetical scenarios were performed, which allowed for analysing the effect of inter-annual variations in snow storage on seasonal runoff separately from other components of the water balance. The results showed that 17 %–42 % (26 % on average) of the total runoff in the study catchments originates as snowmelt, despite the fact that only 12 %–37 % (20 % on average) of the precipitation falls as snow. This means that snow is more effective in generating catchment runoff compared to liquid precipitation. This was demonstrated by modelling experiments which showed that total annual runoff and groundwater recharge decrease in the case of a precipitation shift from snow to rain. In general, snow-poor years were clearly characterized by a lower snowmelt runoff contribution compared to snow-rich years in the analysed period. Additionally, snowmelt started earlier in these snow-poor years and caused lower groundwater recharge. This also affected summer baseflow. For most of the catchments, the lowest summer baseflow was reached in years with both relatively low summer precipitation and snow storage. This showed that summer low flows (directly related to baseflow) in our study catchments are not only a function of low precipitation and high evapotranspiration, but they are significantly affected by the previous winter snowpack. This effect might intensify drought periods in the future when generally less snow is expected.


2020 ◽  
Author(s):  
Michal Jenicek ◽  
Ondrej Ledvinka

<p>The streamflow seasonality in mountain catchments is largely influenced by snow. However, a shift from snowfall to rain is expected in the future. Consequently, a decrease in snow storage and earlier snowmelt is predicted, which will cause changes in spring and summer runoff. The objectives of this study were to quantify 1) how inter-annual variations in snow storages affect spring and summer runoff, including summer low flows and 2) the importance of snowmelt in generating runoff compared to rainfall. The snow storage, groundwater recharge and streamflow were simulated for 59 mountain catchments in Czechia in the period 1980–2014 using a bucket-type catchment model. The model performance was evaluated against observed daily runoff and snow water equivalent. Hypothetical simulations were performed, which allowed us to analyse the effect of inter-annual variations in snow storage on seasonal runoff separately from other components of the water balance. This was done in the HBV snow routine using the threshold temperature T<sub>T</sub> that differentiates between snow and rain and sets the air temperature of snowmelt onset. By changing the T<sub>T</sub>, we can control the amount of accumulated snow and snowmelt timing, while other variables remain unaffected.</p><p>The results showed that 17-42% (26% on average) of the total runoff in study catchments originates as snowmelt, despite the fact that only 12-37% (20% on average) of the precipitation falls as snow. This means that snow is more effective in generating catchment runoff compared to liquid precipitation. This was documented by modelling experiments which showed that total annual runoff and groundwater recharge decreases in the case of a precipitation shift from snow to rain. In general, snow-poor years are clearly characterized by a lower snowmelt runoff contribution compared to snow-rich years in the analysed period. Additionally, snowmelt started earlier in these snow-poor years and caused lower groundwater recharge. This also affected summer baseflow. For most of the catchments, the lowest summer baseflow was reached in years with both relatively low summer precipitation and snow storage. This showed that summer low flows (directly related to baseflow) in our study catchments are not only a function of low precipitation and high evapotranspiration, but they are significantly affected by previous winter snowpack. This effect might intensify the summer low flows in the future when generally less snow is expected.</p><p>Modelling experiments also opened further questions related to model structure and parameterization, specifically how individual model procedures and parameters represent the real natural processes. To understand potential model artefacts might be important when using HBV or similar bucket-type models for impact studies, such as modelling the impact of climate change on catchment runoff.</p>


2020 ◽  
Author(s):  
Michal Jenicek ◽  
Ondrej Ledvinka

Abstract. The streamflow seasonality in mountain catchments is largely influenced by snow. However, a shift from snowfall to rain is expected in the future. Consequently, a decrease in snow storage and earlier snowmelt is predicted, which will cause changes in spring and summer runoff. The objectives of this study were to quantify 1) how inter-annual variations in snow storages affect spring and summer runoff, including summer low flows and 2) the importance of snowmelt in generating runoff compared to rainfall. The snow storage, groundwater recharge and streamflow were simulated for 59 mountain catchments in Czechia in the period 1980–2014 using a bucket-type catchment model. The model performance was evaluated against observed daily runoff and snow water equivalent. Hypothetical simulations were performed, which allowed us to analyse the effect of inter-annual variations in snow storage on seasonal runoff separately from other components of the water balance. The results showed that 17–42 % (26 % on average) of the total runoff in study catchments originates as snowmelt, despite the fact that only 12–37 % (20 % on average) of the precipitation falls as snow. This means that snow is more effective in generating catchment runoff compared to liquid precipitation. This was documented by modelling experiments which showed that total annual runoff and groundwater recharge decreases in the case of a precipitation shift from snow to rain. In general, snow-poor years are clearly characterized by a lower snowmelt runoff contribution compared to snow-rich years in the analysed period. Additionally, snowmelt started earlier in these snow-poor years and caused lower groundwater recharge. This also affected summer baseflow. For most of the catchments, the lowest summer baseflow was reached in years with both relatively low summer precipitation and snow storage. This showed that summer low flows (directly related to baseflow) in our study catchments are not only a function of low precipitation and high evapotranspiration, but they are significantly affected by previous winter snowpack. This effect might intensify the summer low flows in the future when generally less snow is expected.


2021 ◽  
Author(s):  
Michal Jenicek ◽  
Jan Hnilica ◽  
Ondrej Nedelcev ◽  
Vaclav Sipek

<p>Mountains are often called as “water towers” because they substantially affect hydrology of downstream areas. However, snow storages are decreasing and snow melts earlier mainly due to air temperature increase. These changes largely affect seasonal runoff distribution, including summer low flows and thus influence the water availability. Therefore, it is important to investigate the future change in relation between snow and summer low flows, specifically to assess a wide range of hydrological responses to different climate predictions. Therefore, the main objectives of this study were 1) to simulate the future changes in snow storages for a large set of mountain catchments representing different elevations and to 2) analyse how the changes in snow storages will affect streamflow seasonality and low flows in the future reflecting a wide range of climate predictions. The predictions of the future climate from EURO-CORDEX experiment for 59 mountain catchments in Czechia were considered. These data were further used to drive a bucket-type catchment model, HBV-light, to simulate individual components of the rainfall-runoff process for the reference period and three future periods.</p><p>Future simulations showed a dramatic decrease in snow-related variables for all catchments at all elevations. For example, annual maximum SWE decreased by 30%-70% until the end of the 21<sup>st</sup> century compared to the current climate. Additionally, the snow will melt on average by 3-4 weeks earlier in the future. The results also showed the large variability between individual climate chains and indicated that the increase in air temperature causing the decrease in snowfall might be partly compensated by the increase in winter precipitation. Expected changes in snowpack will cause by a month earlier period with highest streamflow during melting season in addition to lower spring runoff volume due to lower snowmelt inputs. The future climate scenarios leading to overall dry conditions in summer are associated with both lowest summer precipitation and seasonal snowpack. The expected lower snow storages might therefore contribute to more extreme low flow periods. The results also showed considerably smaller changes for the RCP 2.6 scenario compared to the RCP 4.5 and RCP 8.5 both in terms snow storages and seasonal runoff. The results are therefore important for mitigation and adaptation strategy related to climate change impacts in mountain regions.</p>


Author(s):  
Ondrej Ledvinka ◽  
◽  
Pavel Coufal ◽  

The territory of Czechia currently suffers from a long-lasting drought period which has been a subject of many studies, including the hydrological ones. Previous works indicated that the basin of the Morava River, a left-hand tributary of the Danube, is very prone to the occurrence of dry spells. It also applies to the development of various hydrological time series that often show decreases in the amount of available water. The purpose of this contribution is to extend the results of studies performed earlier and, using the most updated daily time series of discharge, to look at the situation of the so-called streamflow drought within the basin. 46 water-gauging stations representing the rivers of diverse catchment size were selected where no or a very weak anthropogenic influences are expected and the stability and sensitivity of profiles allow for the proper measurement of low flows. The selected series had to cover the most current period 1981-2018 but they could be much longer, which was considered beneficial for the next determination of the development direction. Various series of drought indices were derived from the original discharge series. Specifically, 7-, 15- and 30-day low flows together with deficit volumes and their durations were tested for trends using the modifications of the Mann– Kendall test that account for short-term and long-term persistence. In order to better reflect the drivers of streamflow drought, the indices were considered for summer and winter seasons separately as well. The places with the situation critical to the future water resources management were highlighted where substantial changes in river regime occur probably due to climate factors. Finally, the current drought episode that started in 2014 was put into a wider context, making use of the information obtained by the analyses.


2013 ◽  
Author(s):  
J. M. Sheridan ◽  
R.G. Williams and D.D. Bosch
Keyword(s):  

2017 ◽  
Vol 49 (2) ◽  
pp. 303-317 ◽  
Author(s):  
Mikołaj Piniewski ◽  
Mateusz Szcześniak ◽  
Shaochun Huang ◽  
Zbigniew W. Kundzewicz

Abstract The objective of this paper is to assess climate change impacts on spatiotemporal changes in annual and seasonal runoff and its components in the basins of two large European rivers, the Vistula and the Odra, for future horizons. This study makes use of the Soil and Water Assessment Tool (SWAT) model, set up at high resolution, and driven by a multi-model ensemble (MME) of nine bias-corrected EURO-CORDEX simulations under two representative concentration pathways (RCPs), 4.5 and 8.5. This paper presents a wealth of illustrative material referring to the annual and seasonal runoff (R) in the reference period as well as projections for the future (MME mean change), with explicit illustration of the multi-model spread based on the agreement between models and statistical significance of change according to each model. Annual R increases are dominating, regardless of RCP and future horizon. The magnitude of the MME mean of spatially averaged increase varies between 15.8% (RCP 4.5, near future) and 41.6% (RCP 8.5, far future). The seasonal patterns show the highest increase in winter and the lowest in spring, whereas the spatial patterns show the highest increase in the inner, lowland part, and the lowest in the southern mountainous part of the basin.


2011 ◽  
Vol 26 (6) ◽  
pp. 568-575 ◽  
Author(s):  
Yusuf Serengil ◽  
Wayne T. Swank ◽  
Mark S. Riedel ◽  
James M. Vose
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document