Influence of coal deformation on the Knudsen number of gas flow in coal seams

Energy ◽  
2021 ◽  
pp. 121161
Author(s):  
Yinbo Zhou ◽  
Hansheng Li ◽  
Jilei Huang ◽  
Ruilin Zhang ◽  
Shijie Wang ◽  
...  
Author(s):  
Ehsan Roohi ◽  
Masoud Darbandi ◽  
Vahid Mirjalili

The current research uses an unstructured direct simulation Monte Carlo (DSMC) method to numerically investigate supersonic and subsonic flow behavior in micro convergent–divergent nozzle over a wide range of rarefied regimes. The current unstructured DSMC solver has been suitably modified via using uniform distribution of particles, employing proper subcell geometry, and benefiting from an advanced molecular tracking algorithm. Using this solver, we study the effects of back pressure, gas/surface interactions (diffuse/specular reflections), and Knudsen number, on the flow field in micronozzles. We show that high viscous force manifesting in boundary layers prevents supersonic flow formation in the divergent section of nozzles as soon as the Knudsen number increases above a moderate magnitude. In order to accurately simulate subsonic flow at the nozzle outlet, it is necessary to add a buffer zone to the end of nozzle. If we apply the back pressure at the outlet, boundary layer separation is observed and a region of backward flow appears inside the boundary layer while the core region of inviscid flow experiences multiple shock-expansion waves. We also show that the wall boundary layer prevents forming shocks in the divergent part. Alternatively, Mach cores appear at the nozzle center followed by bow shocks and an expansion region.


Author(s):  
Arman Sadeghi ◽  
Abolhassan Asgarshamsi ◽  
Mohammad Hassan Saidi

Fluid flow and heat transfer at microscale have attracted an important research interest in recent years due to the rapid development of microelectromechanical systems (MEMS). Fluid flow in microdevices has some characteristics which one of them is rarefaction effect related with gas flow. In this research, hydrodynamically and thermally fully developed laminar rarefied gas flow in annular microducts is studied using slip flow boundary conditions. Two different cases of the thermal boundary conditions are considered, namely: uniform temperature at the outer wall and adiabatic inner wall (Case A) and uniform temperature at the inner wall and adiabatic outer wall (Case B). Using the previously obtained velocity distribution, energy conservation equation subjected to relevant boundary conditions is numerically solved using fourth order Runge-Kutta method. The Nusselt number values are presented in graphical form as well as tabular form. It is realized that for the case A increasing aspect ratio results in increasing the Nusselt number, while the opposite is true for the case B. The effect of aspect ratio on Nusselt number is more notable at smaller values of Knudsen number, while its effect becomes slighter at large Knudsen numbers. Also increasing Knudsen number leads to smaller values of Nusselt number for the both cases.


1981 ◽  
Vol 21 (1) ◽  
pp. 137
Author(s):  
B. Wilkinson ◽  
L. Barro

Vast reserves of gas-bearing coal deposits are located in Queensland. Owing to the extremely low permeability and porosity of the coal, very low gas flow rates are normally encountered. In an effort to enhance the gas production to economic quantities and to degasify the coal to provide a safer mining environment, four experimental wells were drilled into coal seams near Blackwater, Queensland.Based on extensive laboratory testing of coal samples, computerised fracture design calculations were performed to determine a suitable stimulation programme. The wells were hydraulically fractured with up to 15 000 US gal of foamed stimulation fluid containing 75 per cent nitrogen. To prop open the induced fracture system, 15 000 lb of sand was pumped with the foam. The maximum concentration was eight pounds of 20-40 mesh sand per gallon of fluid. Gas production from the unstimulated wells was too low to measure. Early production data soon after the fracturing suggested a gas flow rate of approximately 50 Mcf/D.


Author(s):  
Vladan D. Djordjevic

Rarefied gas flow in a pipe is treated in the paper by modeling the slip boundary condition by means of a fractional derivative. At that the order of the derivative is conveniently chosen to be a function of the average value of the Knudsen number so that the entire Knudsen number range, from continuum flow to free molecular flow, is covered. Very good agreement with the solutions of linearized Boltzmann equation is achieved. The paper represents a natural extension of the work of the same author on the rarefied micro channel flow, published earlier.


Author(s):  
Abhishek Agrawal ◽  
Amit Agrawal

Three-dimensional lattice Boltzmann method based simulations of a microduct have been undertaken in this paper. The objective is to understand the different physical phenomena occurring at these small scales and to investigate when the flow can be treated as two-dimensional. Towards this end, the Knudsen number and aspect ratio (depth to width ratio) are varied for a fixed pressure ratio. The pressure in the microduct is non-linear with the non-linearity in pressure reducing with an increase in Knudsen number. The pressure and velocity behaves somewhat similar to two-dimensional microchannels even when the aspect ratio is unity. The slip velocity at the impenetrable wall has two components: along and perpendicular to the flow. Our results show that the streamwise velocity near the centerline is relatively invariant along the depth for aspect ratio more than three, suggesting that the microduct can be modeled as a two-dimensional microchannel. However, the velocity component along the depth is never identically zero, implying that the flow is not truly two-dimensional. A curious change in vector direction in a plane normal to the flow direction is observed around aspect ratio of four. These first set of three-dimensional results are significant because they will help in theoretical development and flow modeling at micro scales.


Sign in / Sign up

Export Citation Format

Share Document