Resonance-based approach for section flexural rigidity identification of simply supported beams

2021 ◽  
Vol 236 ◽  
pp. 112070
Author(s):  
Danguang Pan ◽  
Zhiyao Feng ◽  
Pan Lu ◽  
Zijian Zheng ◽  
Bincheng Zhao
1964 ◽  
Vol 15 (2) ◽  
pp. 198-202 ◽  
Author(s):  
K. C. Rockey ◽  
I. T. Cook

SummaryThe paper provides relationships between the buckling resistance of simply-supported transversely stiffened plates and the flexural rigidity of the stiffeners for various values of the ratio of torsional rigidity to nexural rigidity. Results are presented for four different stiffener spacings.


2003 ◽  
Vol 82 (4) ◽  
pp. 262-266 ◽  
Author(s):  
K.A. Eckrote ◽  
C.J. Burstone ◽  
M.A. Freilich ◽  
G.E. Messer ◽  
A.J. Goldberg

The integrity of fiber-reinforced composite (FRC) prostheses is dependent, in part, on flexural rigidity. The object of this study was to determine if the flexure behavior of uniform FRC beams with restrained or simply supported ends and various length/depth (L/d) aspect ratios could be more accurately modeled by correcting for shear. Experimental results were compared with three analytical models. All models were accurate at high L/d ratios, but the shear-corrected model was accurate to the lowest, more clinically relevant, L/d values. In this range, more than 40% of the beam deflection was due to shear.


1962 ◽  
Vol 13 (3) ◽  
pp. 212-222 ◽  
Author(s):  
I. T. Cook ◽  
K. C. Rockey

SummaryThe paper presents a solution to the buckling of infinitely long plates when they are reinforced by transverse stiffeners possessing both torsional and flexural rigidity. The cases of both edges being clamped and simply-supported are dealt with. Numerical results are presented for the ratio of torsional rigidity to flexural rigidity as obtained with a thin-walled circular tube. When the stiffeners are completely rigid, in which case the individual panels are clamped along the transverse edges, the results obtained are in agreement with existing solutions for isolated rectangular plates.


2007 ◽  
Vol 04 (03) ◽  
pp. 417-438 ◽  
Author(s):  
A. M. ZENKOUR ◽  
M. N. M. ALLAM ◽  
D. S. MASHAT

An exact solution to the bending of variable-thickness orthotropic plates is developed for a variety of boundary conditions. The procedure, based on a Lévy-type solution considered in conjunction with the state-space concept, is applicable to inhomogeneous variable-thickness rectangular plates with two opposite edges simply supported. The remaining ones are subjected to a combination of clamped, simply supported, and free boundary conditions, and between these two edges the plate may have varying thickness. The procedure is valuable in view of the fact that tables of deflections and stresses cannot be presented for inhomogeneous variable-thickness plates as for isotropic homogeneous plates even for commonly encountered loads because the results depend on the inhomogeneity coefficient and the orthotropic material properties instead of a single flexural rigidity. Benchmark numerical results, useful for the validation or otherwise of approximate solutions, are tabulated. The influences of the degree of inhomogeneity, aspect ratio, thickness parameter, and the degree of nonuniformity on the deflections and stresses are investigated.


1962 ◽  
Vol 13 (2) ◽  
pp. 95-114 ◽  
Author(s):  
K. C. Rockey ◽  
I. T. Cook

SummaryThe paper presents a solution to the buckling under shear stress of infinitely long plates which are reinforced by both transverse stiffeners and longitudinal stiffeners. Each family of stiffeners is assumed to consist of equally spaced stiffeners. Both simply-supported and clamped edge conditions are examined. Numerical results are obtained for the case of a plate with transverse stiffeners and a central longitudinal stiffener and relationships between the buckling stress and the flexural rigidity parameters of the stiffeners are provided for three different spacings of the transverse stiffeners.


In the investigation on structural analysis of flat head piston deflection and stress equations plays major role in mathematical modeling. The same has been used in this analysis. In the part of the analysis the thickness of the flat head of the piston is considered as the same of that of simply supported circular plate and the loads are applied on it reacts with the supports held at the top of the gudgeon hole. The piston is same as one side closed cylinder and ended with flat circular plate. It is the most general that the deflections due to axial loads are neglected. Hence the deflection and stress equations of the simply supported circular plate are adopted. Aluminum is taken as material of the component throughout the analysis and grey cast iron is taken as material for the rings in the modeling of the piston. Flexural rigidity plays a major role in the calculation for the analysis. The results of the mathematical analysis have been compared with the same of that of simulation using ANSYS software.


1969 ◽  
Vol 20 (1) ◽  
pp. 75-87
Author(s):  
K. C. Rockey ◽  
I. T. Cook

SummaryThe paper presents a solution to the buckling under shear stress of infinitely long plates orthogonally reinforced by stiffeners having both flexural and torsional rigidity. Each family of stiffeners is assumed to consist of equally spaced identical stiffeners. Numerical results are given for the case of a plate with transverse stiffeners and a central longitudinal stiffener for the following three cases: (i)Transverse and longitudinal stiffeners of closed tubular cross-section.(ii)Transverse stiffeners of closed tubular cross-section, longitudinal stiffeners possessing only flexural rigidity.(iii)Transverse stiffeners possessing only flexural rigidity, the longitudinal stiffeners being of closed tubular cross-section.Relationships between the buckling stress parameter K and the flexural rigidity parameter γ of the stiffeners are presented for each of the three cases when the identical transverse stiffeners are placed at spacings of d, 0·8d and 0·5d, where d is the depth of the webplate.Case (i) has provided values of the buckling coefficient K for finite rectangular plates clamped on three edges and simply-supported on the remaining edge.


1976 ◽  
Vol 98 (2) ◽  
pp. 391-396 ◽  
Author(s):  
D. K. Rao

Improved equations governing the deflection of an unsymmetric sandwich beam (which include the effect of extensional and bending rigidities of its stiff core) are derived using a variational method. The effect of face-thickness ratio on the contribution of the core to the overall flexural rigidity is studied. Numerical results for simply supported and fixed-fixed beams subjected to a uniformly distributed load are obtained by using Laplace transforms. These results show that ignoring the bending and extensional effects of a stiff core can cause errors in maximum deflections as high as 20 percent. The corresponding errors in stresses are very high, and they vary from 10 to 150 percent. Hence, it is suggested that the extensional and bending effects of the core should be taken into account when one is interested in calculating the maximum stresses in stiff-cored beams.


2017 ◽  
Vol 21 (2) ◽  
pp. 707-726 ◽  
Author(s):  
Wei Li ◽  
Yansong He ◽  
Zhongming Xu ◽  
Zhifei Zhang

In this study, a theoretical investigation on the sound transmission loss characteristics of four-side simply supported sandwich panels considering the flexural rigidity of the face sheet has been presented. With the flexural rigidity of the face sheet taken into account, the sound transmission problem of the sandwich panels is derived from the governing equation of bending vibration. The sound transmission loss expression is also derived. The validation of the theoretical prediction model is validated by comparing with the high-accuracy finite element and boundary element simulation. Numerical analysis shows that the flexural rigidity of face sheet influences the natural frequencies obviously, and the theoretical prediction model proposed has high accuracy on predicting the natural frequencies and sound transmission loss of four-side simply supported sandwich panels. The effects of the face sheet flexural rigidity, the thickness of face sheets and core layer, as well as the damping coefficient of the core on the sound transmission loss are systematically investigated.


2021 ◽  
pp. 136943322110220
Author(s):  
Marco Bonopera ◽  
Kuo-Chun Chang

Testing methods are required for estimating prestress losses in Prestressed Concrete (PC) girder-bridges. They mainly include destructive approaches which cause significant damages. Conversely, dynamic nondestructive methods are unsuitable. Given these findings, a novel method for identifying residual prestress force in simply supported PC girder-bridges was implemented. Following the vertical load application in a three-point bending, the method estimates the prestress force by measuring the vertical deflection at a quarter or, alternatively, at the midspan of the PC girder-bridge. The method also requires information regarding its flexural rigidity. Particularly, the initial tangent Young’s modulus must be evaluated by compression tests on cores drilled at its quarter and midspan cross-sections after three-point bending. In absence of the geometric and/or material properties, the flexural rigidity can be estimated according to free vibrations. Secondly, the method comprises a reference solution, or a finite element model of the PC girder-bridge, in which the prestress force is unknown. Thirdly, the measured deflection becomes a parameter of the prestress force identification process. Accurate identifications are obtained when the deflection, under a higher vertical load, was precisely measured and the flexural rigidity was determined using reference solution and initial tangent Young’s modulus. In this article, the novel method was simulated on a simply supported PC beam-bridge subjected to time-dependent prestress losses for ≈9.5 months in the laboratory.


Sign in / Sign up

Export Citation Format

Share Document