P.240 Electroconvulsive therapy induces functional brain changes in patients with depression: A systematic review of current fMRI literature

2019 ◽  
Vol 29 ◽  
pp. S184-S185
Author(s):  
D. Porta Casteràs ◽  
M. Cano ◽  
V. Gálvez ◽  
M. Serra-Blasco ◽  
E. Martínez-Amorós ◽  
...  
2021 ◽  
Vol 19 ◽  
Author(s):  
Yuchao Jiang ◽  
Mingjun Duan ◽  
Hui He ◽  
Dezhong Yao ◽  
Cheng Luo

Background: Schizophrenia (SZ) is a severe psychiatric disorder typically characterized by multidimensional psychotic syndromes. Electroconvulsive therapy (ECT) is a treatment option for medication-resistant patients with SZ or to resolve acute symptoms. Although the efficacy of ECT has been demonstrated in clinical use, its therapeutic mechanisms in the brain remain elusive. Objective: This study aimed to summarize brain changes on structural magnetic resonance imaging (sMRI) and functional MRI (fMRI) after ECT. Methods: According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, a systematic review was carried out. The PubMed and Medline databases were systematically searched using the following medical subject headings (MeSH): (electroconvulsive therapy OR ECT) AND (schizophrenia) AND (MRI OR fMRI OR DTI OR DWI). Results: This review yielded 12 MRI studies, including 4 with sMRI, 5 with fMRI and 3 with multimodal MRI. Increases in volumes of the hippocampus and its adjacent regions (parahippocampal gyrus and amygdala) as well as insula and frontotemporal regions were noted after ECT. fMRI studies found ECT-induced changes in different brain regions/networks, including the hippocampus, amygdala, default model network, salience network and other regions/networks that are thought to highly correlate with the pathophysiologic characteristics of SZ. The results of the correlation between brain changes and symptom remissions are inconsistent Conclusion: Our review provides evidence supporting ECT-induced brain changes on sMRI and fMRI in SZ and explores the relationship between these changes and symptom remission.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hyune June Lee ◽  
Sung Min Kim ◽  
Ji Yean Kwon

Abstract Background Peripartum depression is a common disorder with very high potential hazards for both the patients and their babies. The typical treatment options include antidepressants and electroconvulsive therapy. However, these treatments do not ensure the safety of the fetus. Recently, repetitive transcranial magnetic stimulation has emerged as a promising treatment for neuropathies as well as depression. Nevertheless, many studies excluded pregnant women. This systematic review was conducted to confirm whether repetitive transcranial magnetic stimulation was a suitable treatment option for peripartum depression. Methods We performed a systematic review that followed the PRISMA guidelines. We searched for studies in the MEDLINE, PsycINFO, EMBASE, and Cochrane library databases published until the end of September 2020. Eleven studies were selected for the systematic review, and five studies were selected for quantitative synthesis. Data analysis was conducted using Comprehensive Meta-Analysis 3 software. The effect size was analyzed using the standardized mean difference, and the 95% confidence interval (CI) was determined by the generic inverse variance estimation method. Results The therapeutic effect size of repetitive transcranial magnetic stimulation for peripartum depression was 1.394 (95% CI: 0.944–1.843), and the sensitivity analysis effect size was 1.074 (95% CI: 0.689–1.459), indicating a significant effect. The side effect size of repetitive transcranial magnetic stimulation for peripartum depression was 0.346 (95% CI: 0.214–0.506), a meaningful result. There were no severe side effects to the mothers or fetuses. Conclusions From various perspectives, repetitive transcranial magnetic stimulation can be considered an alternative treatment to treat peripartum depression to avoid exposure of fetuses to drugs and the severe side effects of electroconvulsive therapy. Further research is required to increase confidence in the results.


Author(s):  
Lídia Vaqué‐Alcázar ◽  
Kilian Abellaneda‐Pérez ◽  
Cristina Solé‐Padullés ◽  
Núria Bargalló ◽  
Cinta Valls‐Pedret ◽  
...  

2018 ◽  
Vol 34 (3) ◽  
pp. 237-261 ◽  
Author(s):  
Sin Ki Ng ◽  
Donna M. Urquhart ◽  
Paul B. Fitzgerald ◽  
Flavia M. Cicuttini ◽  
Sultana M. Hussain ◽  
...  

2021 ◽  
pp. jnnp-2021-326604
Author(s):  
Melisa Gumus ◽  
Alexandra Santos ◽  
Maria Carmela Tartaglia

Postconcussion syndrome (PCS) is a term attributed to the constellation of symptoms that fail to recover after a concussion. PCS is associated with a variety of symptoms such as headaches, concentration deficits, fatigue, depression and anxiety that have an enormous impact on patients’ lives. There is currently no diagnostic biomarker for PCS. There have been attempts at identifying structural and functional brain changes in patients with PCS, using diffusion tensor imaging (DTI) and functional MRI (fMRI), respectively, and relate them to specific PCS symptoms. In this scoping review, we appraised, synthesised and summarised all empirical studies that (1) investigated structural or functional brain changes in PCS using DTI or fMRI, respectively, and (2) assessed behavioural alterations in patients with PCS. We performed a literature search in MEDLINE (Ovid), Embase (Ovid) and PsycINFO (Ovid) for primary research articles published up to February 2020. We identified 8306 articles and included 45 articles that investigated the relationship between DTI and fMRI parameters and behavioural changes in patients with PCS: 20 diffusion, 20 fMRI studies and 5 papers with both modalities. Most frequently studied structures were the corpus callosum, superior longitudinal fasciculus in diffusion and the dorsolateral prefrontal cortex and default mode network in the fMRI literature. Although some white matter and fMRI changes were correlated with cognitive or neuropsychiatric symptoms, there were no consistent, converging findings on the relationship between neuroimaging abnormalities and behavioural changes which could be largely due to the complex and heterogeneous presentation of PCS. Furthermore, the heterogeneity of symptoms in PCS may preclude discovery of one biomarker for all patients. Further research should take advantage of multimodal neuroimaging to better understand the brain–behaviour relationship, with a focus on individual differences rather than on group comparisons.


Sign in / Sign up

Export Citation Format

Share Document