The impact of climate on risk of mania

2016 ◽  
Vol 33 (S1) ◽  
pp. S74-S74
Author(s):  
C.R. Medici ◽  
C.H. Vestergaard ◽  
D. Hadzi-Pavlovic ◽  
P. Munk-Jørgensen ◽  
G. Parker

IntroductionBipolar disorder varies with season: admissions for depression peak in winter and mania peak in summer. Sunlight presumably increases the risk of mania through suppression of melatonin. If so, we expect admissions for mania to vary in accordance with climate variations.ObjectivesTo investigate how climate and climate changes affects admissions for mania.AimsTo identify which climate variables – sunshine, ultraviolet radiation, rain and snow cover – affect admissions for mania.To examine whether year-to-year weather variation as well as long-term climate changes reflects the variation in number of admissions for mania.MethodsThis register-based nationwide cohort study covers all patients admitted for mania (ICD-10 code F31 or F30.0–F30.2) between 1995 and 2012 in Denmark. Climate data, obtained from the Danish Meteorological Institute, were merged with admission data and correlated using an Unobserved Component Model regression model.Preliminary resultsIn total, 8893 patients were admitted 24,313 times between 1995 and 2012: 6573 first-admissions and 17,740 readmissions. Linear regression shows significant association between admissions per day and hours of sunshine (P < 0.01) and ultraviolet radiation (UV) dose (P < 0.01). Average days with snow cover and rain were not significantly correlated with admissions. Analyses on year-to-year variation and long-term change are not yet available.Preliminary conclusionsAdmissions for mania are correlated with sunshine and UV, but not rain and snow cover. If more patients are admitted during very sunny summers compared with less sunny summers this implies a relation with light itself and not just season.Disclosure of interestThe authors have not supplied their declaration of competing interest.

2021 ◽  
Vol 13 (8) ◽  
pp. 4126
Author(s):  
Natalia Tomczewska-Popowycz ◽  
Łukasz Quirini-Popławski

The purpose of this study was to determine how political instability influences inbound tourist flows in Ukrainian cities, performance of tourism-related businesses, and tourism-based profits in general. This study allows us to present the impact of various events on the tourism economy in Ukraine; however, the available secondary data with the unobserved component model procedure detection give only a general overview of the situation. Thus, interviews were conducted with experts, including managers of accommodation facilities, employees of municipal tourism development departments, and researchers investigating tourism. Interviews with experts revealed opportunities, threats, and future scenarios of tourism in Ukraine in the face of five years of political instability. The results support previous findings that political instability reduces tourist traffic over the short term. On the other hand, the interviews with experts representing major province cities have shown different results for the long-term perspective. Cities with developed tourism sectors in areas away from the place of conflict are beneficiaries of political instability. Disadvantaged are cities that had their tourist flows based on the citizens of the aggressor’s country—the Russian Federation. Cities that are underdeveloped in terms of tourism did not experience a significant impact of the political instability in eastern Ukraine.


2018 ◽  
Vol 19 (11) ◽  
pp. 1731-1752 ◽  
Author(s):  
Md. Shahabul Alam ◽  
S. Lee Barbour ◽  
Amin Elshorbagy ◽  
Mingbin Huang

Abstract The design of reclamation soil covers at oil sands mines in northern Alberta, Canada, has been conventionally based on the calibration of soil–vegetation–atmosphere transfer (SVAT) models against field monitoring observations collected over several years, followed by simulations of long-term performance using historical climate data. This paper evaluates the long-term water balances for reclamation covers on two oil sands landforms and three natural coarse-textured forest soil profiles using both historical climate data and future climate projections. Twenty-first century daily precipitation and temperature data from CanESM2 were downscaled based on three representative concentration pathways (RCPs) employing a stochastic weather generator [Long Ashton Research Station Weather Generator (LARS-WG)]. Relative humidity, wind speed, and net radiation were downscaled using the delta change method. Downscaled precipitation and estimated potential evapotranspiration were used as inputs to simulate soil water dynamics using physically based models. Probability distributions of growing season (April–October) actual evapotranspiration (AET) and net percolation (NP) for the baseline and future periods show that AET and NP at all sites are expected to increase throughout the twenty-first century regardless of RCP, time period, and soil profile. Greater increases in AET and NP are projected toward the end of the twenty-first century. The increases in future NP at the two reclamation covers are larger (as a percentage increase) than at most of the natural sites. Increases in NP will result in greater water yield to surface water and may accelerate the rate at which chemical constituents contained within mine waste are released to downstream receptors, suggesting these potential changes need to be considered in mine closure designs.


2020 ◽  
Vol 8 (1) ◽  
pp. 195-210
Author(s):  
Dana Ariel Lapides ◽  
Michael Manga

Abstract. Spring-fed streams throughout volcanic regions of the western United States exhibit larger widths than runoff-fed streams with similar discharge. Due to the distinctive damped hydrograph of spring-fed streams (as compared to large peaks visible in the hydrographs of runoff-fed streams), large wood is less mobile in spring-fed than runoff-fed stream channels, so wood is more likely to remain in place than form logjams as in runoff-fed streams. The consequent long residence time of wood in spring-fed streams allows wood to potentially have long-term impacts on channel morphology. We used high-resolution satellite imagery in combination with discharge and climate data from published reports and publicly available databases to investigate the relationship between discharge, wood length, and channel width in 38 spring-fed and 20 runoff-fed streams, additionally responding to a call for increased use of remote sensing to study wood dynamics and daylighting previously unpublished data. We identified an order of magnitude more logjams than single logs per unit length present in runoff-fed streams as compared to spring-fed streams. Histograms of log orientation in spring-fed streams additionally confirmed that single logs are immobile in the channel so that the impact of single logs on channel morphology could be pronounced in spring-fed streams. Based on these observed differences, we hypothesized that there should be a difference in channel morphology. A model for stream width in spring-fed streams based solely on length of wood is a better model than one derived from discharge or including both discharge and wood length. This study provides insights into controls on stream width in spring-fed streams.


2016 ◽  
Vol 13 ◽  
pp. 37-42 ◽  
Author(s):  
Alan K. Betts ◽  
Raymond L. Desjardins ◽  
Devon E. Worth

Abstract. This study uses 55 years of hourly observations of air temperature, relative humidity, daily precipitation, snow cover and cloud cover from 15 climate stations across the Canadian Prairies to analyze biosphere-atmosphere interactions. We will provide examples of the coupling between climate, snow cover, clouds, and land use. Snow cover acts as a fast climate switch. With the first snow fall, air temperature falls by 10 °C, and a similar increase in temperature occurs with snow melt. Climatologically, days with snow cover are 10 °C cooler than days with no snow cover in Alberta. However the interannual variability has a larger range, so that for every 10 % decrease in days with snow cover, the mean October to April climate is warmer by 1.4 to 1.5 °C. Snow cover also transforms the coupling between clouds and the diurnal cycle of air temperature from a boundary layer regime dominated by shortwave cloud forcing in the warm season to one dominated by longwave cloud forcing with snow cover. Changing agricultural land use in the past thirty years, specifically the reduction of summer fallowing, has cooled and moistened the growing season climate and increased summer precipitation. These hourly climate data provide a solid observational basis for understanding land surface coupling, which can be used to improve the representation of clouds and land-surface processes in atmospheric models.


2020 ◽  
Vol 12 (20) ◽  
pp. 3439
Author(s):  
Mendy van der Vliet ◽  
Robin van der Schalie ◽  
Nemesio Rodriguez-Fernandez ◽  
Andreas Colliander ◽  
Richard de Jeu ◽  
...  

Reliable soil moisture retrievals from passive microwave satellite sensors are limited during certain conditions, e.g., snow coverage, radio-frequency interference, and dense vegetation. In these cases, the retrievals can be masked using flagging algorithms. Currently available single- and multi-sensor soil moisture products utilize different flagging approaches. However, a clear overview and comparison of these approaches and their impact on soil moisture data are still lacking. For long-term climate records such as the soil moisture products of the European Space Agency (ESA) Climate Change Initiative (CCI), the effect of any flagging inconsistency resulting from combining multiple sensor datasets is not yet understood. Therefore, the first objective of this study is to review the data flagging system that is used within multi-sensor ESA CCI soil moisture products as well as the flagging systems of two other soil moisture datasets from sensors that are also used for the ESA CCI soil moisture products: The level 3 Soil Moisture and Ocean Salinity (SMOS) and the Soil Moisture Active/Passive (SMAP). The SMOS and SMAP soil moisture flagging systems differ substantially in number and type of conditions considered, critical flags, and data source dependencies. The impact on the data availability of the different flagging systems were compared for the SMOS and SMAP soil moisture datasets. Major differences in data availability were observed globally, especially for northern high latitudes, mountainous regions, and equatorial latitudes (up to 37%, 33%, and 32% respectively) with large seasonal variability. These results highlight the importance of a consistent and well-performing approach that is applicable to all individual products used in long-term soil moisture data records. Consequently, the second objective of the present study is to design a consistent and model-independent flagging strategy to improve soil moisture climate records such as the ESA CCI products. As snow cover, ice, and frozen conditions were demonstrated to have the biggest impact on data availability, a uniform satellite driven flagging strategy was designed for these conditions and evaluated against two ground observation networks. The new flagging strategy demonstrated to be a robust flagging alternative when compared to the individual flagging strategies adopted by the SMOS and SMAP soil moisture datasets with a similar performance, but with the applicability to the entire ESA CCI time record without the use of modelled approximations.


2011 ◽  
Vol 52 (58) ◽  
pp. 89-96 ◽  
Author(s):  
Andrea Fischer ◽  
Marc Olefs ◽  
Jakob Abermann

AbstarctThis study illustrates the relevance of cryospheric changes for, and their impact on, ski tourism in Austria. The results of several case studies on snow reliability, snow production and mass balance in glacier ski resorts in the Ötz and Stubai valleys are summarized. Climate data from Obergurgl (1936ma.s.l.) in the Ötz valley are analyzed with respect to the amount and duration of natural snow cover and the possibility of snow production. A case study on Mittelbergferner focuses on the impacts of glacial recession on a ski resort and possible adaptation measures. From long-term glacier inventory and short-term mass-balance data, the effect of operating ski resorts on glaciers is investigated. At Obergurgl, the probability of both snow cover and snow production is >80% from December to March and decreases significantly in the months before and after this peak season. The interannual variability of snow cover and production is low during the main season and higher in other months. Year-to-year differences are larger than any long-term trend. Glacier ski resorts must adapt to shrinking glacial area and falling glacier surface. Covering the glacier with textiles reduces ablation by 60% and results in significantly less volume loss than on uncovered parts of the glacier. Neither the mass-balance comparison between groomed and ungroomed areas nor the comparison of long-term volume changes between 10 ski resort glaciers and 100 surrounding glaciers showed evidence for an impact of the operation of ski resorts on the glaciers.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Vera Petrovna Kuznetsova

The article presents results of investigation the impact of modern climate change on the environment in the taiga zone of the Khanty-Mansiysk Autonomous Okrug-Ugra. Long-term indicators of average annual air temperature and the duration of the occurrence of stable snow cover are given according to some meteorological stations in the region. The response of the natural environment is determined based on the analysis of phenological processes under the conditions of climate change in the studied territory. Hazardous hydrometeorological phenomena observed on the territory in Khanty-Mansi Autonomous Okrug-Ugra are presented.


2014 ◽  
Vol 7 (2) ◽  
pp. 669-691 ◽  
Author(s):  
T. W. Estilow ◽  
A. H. Young ◽  
D. A. Robinson

Abstract. This paper describes the long-term, satellite-based visible snow cover extent NOAA climate data record (CDR) currently available for climate studies, monitoring, and model validation. This environmental data product is developed from weekly Northern Hemisphere snow cover extent data that have been digitized from snow cover maps onto a Cartesian grid draped over a polar stereographic projection. The data has a spatial resolution of 190.5 km at 60 ° latitude, are updated monthly, and span from 4 October 1966 to present. The data comprise the longest satellite-based CDR of any environmental variable. Access to the data are provided in netCDF format and are archived by the National Climatic Data Center (NCDC) of the National Oceanic and Atmospheric Administration (NOAA) under the satellite climate data record program (doi:10.7289/V5N014G9). The basic characteristics, history, and evolution of the dataset are presented herein. In general, the CDR provides similar spatial and temporal variability as its widely used predecessor product. Key refinements to the new CDR improve the product's grid accuracy and documentation, and bring metadata into compliance with current standards for climate data records.


2021 ◽  
Vol 14 (8) ◽  
pp. 5269-5284
Author(s):  
Matthias Mengel ◽  
Simon Treu ◽  
Stefan Lange ◽  
Katja Frieler

Abstract. Attribution in its general definition aims to quantify drivers of change in a system. According to IPCC Working Group II (WGII) a change in a natural, human or managed system is attributed to climate change by quantifying the difference between the observed state of the system and a counterfactual baseline that characterizes the system's behavior in the absence of climate change, where “climate change refers to any long-term trend in climate, irrespective of its cause” (IPCC, 2014). Impact attribution following this definition remains a challenge because the counterfactual baseline, which characterizes the system behavior in the hypothetical absence of climate change, cannot be observed. Process-based and empirical impact models can fill this gap as they allow us to simulate the counterfactual climate impact baseline. In those simulations, the models are forced by observed direct (human) drivers such as land use changes, changes in water or agricultural management but a counterfactual climate without long-term changes. We here present ATTRICI (ATTRIbuting Climate Impacts), an approach to construct the required counterfactual stationary climate data from observational (factual) climate data. Our method identifies the long-term shifts in the considered daily climate variables that are correlated to global mean temperature change assuming a smooth annual cycle of the associated scaling coefficients for each day of the year. The produced counterfactual climate datasets are used as forcing data within the impact attribution setup of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP3a). Our method preserves the internal variability of the observed data in the sense that factual and counterfactual data for a given day have the same rank in their respective statistical distributions. The associated impact model simulations allow for quantifying the contribution of climate change to observed long-term changes in impact indicators and for quantifying the contribution of the observed trend in climate to the magnitude of individual impact events. Attribution of climate impacts to anthropogenic forcing would need an additional step separating anthropogenic climate forcing from other sources of climate trends, which is not covered by our method.


Geographies ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 381-397
Author(s):  
Kai Wang ◽  
Xuepeng Zhao

Nearly 40 years of aerosol optical thickness (AOT) climate data record (CDR) derived from NOAA operational satellite Advanced Very High Resolution Radiometer (AVHRR) observation over the global oceans is used to study the AOT changes due to the COVID-19 lockdown over the surrounding coastal oceanic areas of 18 megacities in the coast zone (MCCZ). The AOT difference between the annual mean AOT values of 2020 with COVID-19 lockdown and 2019 without the lockdown along with the 2020 AOT annual anomaly are used to effectively identify the AOT changes that are a result of the lockdown. We found that for most of the 18 MCCZ, the COVID-19 lockdowns implemented to contain the spread of the coronavirus resulted in a decrease between 1% and 30% in AOT due to reduced anthropogenic emissions associated with the lockdowns. However, the AOT long-term trend and other aerosol interannual variations due to favorable or unfavorable meteorological conditions may mask AOT changes due to the lockdown effect in some MCCZ. Different seasonal variations of aerosol amount in 2020 relative to 2019 due to other natural aerosol emission sources not influenced by the lockdown, such as dust storms and natural biomass burning and smoke, may also conceal a limited reduction in the annual mean AOT due to the lockdown in MCCZ with relatively loose lockdown. This study indicates that the use of long-term satellite observation is helpful for studying and monitoring the aerosol changes due to the emission reduction associated with the COVID-19 lockdown in the surrounding coastal oceanic areas of MCCZ, which will benefit the future development of the mitigation strategy for air pollution and emissions in megacities.


Sign in / Sign up

Export Citation Format

Share Document