New diketopiperazine alkaloid and polyketides from marine-derived fungus Penicillium sp. TW58-16 with antibacterial activity against Helicobacter pylori

Fitoterapia ◽  
2021 ◽  
pp. 105095
Author(s):  
Danmei Tian ◽  
Xiaoshuang Gou ◽  
Jia Jia ◽  
Jihua Wei ◽  
Mingxin Zheng ◽  
...  
2019 ◽  
Vol 16 (4) ◽  
pp. 392-400 ◽  
Author(s):  
Göknil Pelin Coşkun ◽  
Teodora Djikic ◽  
Sadık Kalaycı ◽  
Kemal Yelekçi ◽  
Fikrettin Şahin ◽  
...  

Background:The main factor for the prolongation of the ulcer treatment in the gastrointestinal system would be Helicobacter pylori infection, which can possibly lead to gastrointestinal cancer. Triple therapy is the treatment of choice by today's standards. However, observed resistance among the bacterial strains can make the situation even worse. Therefore, there is a need to discover new targeted antibacterial therapy in order to make success in the eradication of H. pylori infections.Methods:The targeted therapy rule is to identify the related macromolecules that are responsible for the survival of the bacteria. Thus, 2-[(2',4'-difluoro-4-hydroxybiphenyl-3-yl)carbonyl]-N- (substituted)hydrazinocarbothioamide (3-13) and 5-(2',4'-difluoro-4-hydroxybiphenyl-3-yl)-4- (substituted)-2,4-dihydro-3H-1,2,4-triazole-3-thiones (14-17) were synthesized and evaluated for antibacterial activity in vitro against H. pylori.Results:All of the tested compounds showed remarkable antibacterial activity compared to the standard drugs (Ornidazole, Metronidazole, Nitrimidazin and Clarithromycin). Compounds 4 and 13 showed activity as 2µg/ml MIC value.Conclusion:In addition, we have investigated binding modes and energy of the compounds 4 and 13 on urease enzyme active by using the molecular docking tools.


Marine Drugs ◽  
2018 ◽  
Vol 16 (10) ◽  
pp. 358 ◽  
Author(s):  
Zhongbin Cheng ◽  
Wei Xu ◽  
Lijun Liu ◽  
Shumin Li ◽  
Wangjun Yuan ◽  
...  

Chemical examination of the EtOAc extract of the deep sea-derived fungus Penicillium sp. YPGA11 resulted in the isolation of four new farnesylcyclohexenones, peniginsengins B–E (1–4), and a known analog peniginsengin A (5). The structures of compounds 1–4 were determined on the basis of comprehensive analyses of the nuclear magnetic resonance (NMR) and mass spectroscopy (MS) data, and the absolute configurations of 1, 2, and 4 were determined by comparisons of experimental electronic circular dichroism (ECD) with calculated ECD spectra. Compounds 1–5, characterized by a highly oxygenated 1-methylcyclohexene unit and a (4E,8E)-4,8-dimethyldeca-4,8-dienoic acid side chain, are rarely found in nature. Compounds 2–4 exhibited antibacterial activity against Staphylococcus aureus.


2020 ◽  
Vol 71 (6) ◽  
pp. 267-273 ◽  
Author(s):  
Branislava D. Kocic ◽  
Dobrila M. Stankovic Dordevic ◽  
Marija V. Dimitrijevic ◽  
Marija S. Markovic ◽  
Dragoljub L. Miladinovic

The susceptibility of Helicobacter pylori to three essential oils (EOs), 12 naturally occurring monoterpene hydrocarbons, oxygenated and phenolic monoterpenes and three reference antibiotics were studied. Classification and comparison of essential oils and monoterpenes on the basis of their chemical composition and antibacterial activity were made by the utilization of principal component analyses (PCA) and agglomerative hierarchical clustering (AHC). The most abundant compound in the Thymus glabrescens Willd. and Thymus pulegioides L. EOs is geraniol (33.8% and 52.5%), while the main constituent in Satureja kitaibelii Wierzb. ex Heuff. EO is limonene (16,1%). The compound that was the most active against H. pylori was carvacrol. EOs of T. glabrescens and S. kitaibelii exhibit higher antibacterial ability in comparison with all monoterpenes, except carvacrol, probably based on the concept of synergistic activity of essential oil components. PCA separated essential oils based on chemical composition and explain 96.5% of the total variance in the first two principal components. Essential oils, phenolic monoterpenes and two antibiotics were classified in the same sub-cluster within AHC analyses. EOs of T. glabrescens and S. kitaibelii can be used to treat infections caused by H. pylori, as a potentially effective, cheap and safe natural products. Further research of antibacterial activity of selected monoterpenes, essential oils and standard antibiotic combinations, as well as clinical study are required.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Julio Benites ◽  
Héctor Toledo ◽  
Felipe Salas ◽  
Angélica Guerrero ◽  
David Rios ◽  
...  

Infection byHelicobacter pyloriincreases 10 times the risk of developing gastric cancer. Juglone, a natural occurring 1,4-naphthoquinone, preventsH. pylorigrowth by interfering with some of its critical metabolic pathways. Here, we report the design, synthesis, andin vitroevaluation of a series of juglone derivatives, namely, 2/3-phenylaminojuglones, as potentialH. pylorigrowth inhibitors. Results show that 5 out of 12 phenylaminojuglones (at 1.5 μg/mL) were 1.5–2.2-fold more active than juglone. Interestingly, most of the phenylaminojuglones (10 out of 12) were 1.1–2.8 fold more active than metronidazole, a knownH. pylorigrowth inhibitor. The most active compound, namely, 2-((3,4,5-trimethoxyphenyl)amino)-5-hydroxynaphthalene-1,4-dione 7, showed significant higher halo of growth inhibitions (HGI = 32.25 mm) to that of juglone and metronidazole (HGI = 14.50 and 11.67 mm). Structural activity relationships of the series suggest that the nature and location of the nitrogen substituents in the juglone scaffold, likely due in part to their redox potential, may influence the antibacterial activity of the series.


2021 ◽  
pp. 101446
Author(s):  
Hui Huang ◽  
Fei Peng ◽  
Junyi Li ◽  
Zhanggen Liu ◽  
Mingyong Xie ◽  
...  

Marine Drugs ◽  
2020 ◽  
Vol 18 (2) ◽  
pp. 71 ◽  
Author(s):  
Mudassir Shah ◽  
Chunxiao Sun ◽  
Zichao Sun ◽  
Guojian Zhang ◽  
Qian Che ◽  
...  

Three new polyketides, ketidocillinones A–C (1–3), were discovered from the extract of an Antarctica sponge-derived fungus Penicillium sp. HDN151272. All the structures were deduced by spectroscopic data, including NMR and HRESIMS. The absolute configuration of compound 3 was established by using ECD calculation. Compounds 1−3 can be slowly oxidized to quinone form when exposed to air. Ketidocillinones B and C (2 and 3) exhibited potent antibacterial activity against Pseudomonas aeurigenosa, Mycobacterium phlei, and MRCNS (methicillin-resistant coagulase-negative staphylococci) with MIC values ranging from 1.56 to 25.00 µg/mL.


2018 ◽  
Vol 13 (7) ◽  
pp. 1934578X1801300 ◽  
Author(s):  
Subrat Kumar Bhattamisra ◽  
Chew Hui Kuean ◽  
Lee Boon Chieh ◽  
Vivian Lee Yean Yan ◽  
Chin Koh Lee ◽  
...  

The antibacterial activity of geraniol and its effect in combination with ampicillin, amoxicillin and clarithromycin against Staphylococcus aureus, Escherichia coli and Helicobacter pylori was tested. The minimum inhibitory concentrations (MICs) and combinatory effects of geraniol against the bacteria were assessed by using the modified broth microdilution and checkerboard assay, respectively. The combinatory effect is expressed as fractional inhibitory concentration index (FICI). The MIC of geraniol against S. aureus, E. coli and H. pylori was found to be 11200, 5600, and 7325 μg/mL, respectively. A significant synergistic effect was observed with geraniol and ampicillin against S. aureus with FICI in the range 0.19 to 0.32. Geraniol and ampicillin exhibited a partial synergistic effect against E. coli. A similar effect was observed with geraniol and clarithromycin against S. aureus. A partial synergistic effect was observed with clarithromycin and geraniol against H. pylori with the FICI value in the range 0.86 to 0.89. An additive effect was observed with geraniol and amoxicillin combination against H. pylori. However, the amoxicillin and clarithromycin dose was reduced by thirty-two fold when combined with geraniol against H. pylori. The anti- H. pylori effect of geraniol with clarithromycin and amoxicillin could be of potential interest in the treatment of H. pylori infection and associated ulcers in humans. Further, geraniol, in combination with other antibiotics, has substantial therapeutic potential against S. aureus and E.coli infection.


Sign in / Sign up

Export Citation Format

Share Document