Light exposure time and light quality on seed germination of Vellozia species (Velloziaceae) from Brazilian campo rupestre

Flora ◽  
2018 ◽  
Vol 238 ◽  
pp. 94-101 ◽  
Author(s):  
Bárbara C. Vieira ◽  
Bianca M.A. Rodrigues ◽  
Queila S. Garcia
1992 ◽  
Vol 2 (1) ◽  
pp. 15 ◽  
Author(s):  
L Valbuena ◽  
R Tarrega ◽  
E Luis

The influence of high temperatures on germination of Cistus laurifolius and Cistus ladanifer seeds was analyzed. Seeds were subjected to different temperatures for different times, afterwards they were sowed in plastic petri dishes and monitored for germinated seeds over two months.The germination rate observed in Cistus ldanifer was greater than in Cistus laurifolius. In both species, heat increased germination percentages. For Cistus laurifolius higher temperatures or longer exposure times were needed. Germination percentages of Cistus ladanifer were lower when heat exposure time was 15 minutes.It must be emphasized that germination occurred when seeds were not treated, while seeds exposed to 150�C for 5 minutes or more did not germinate.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Muhammad Musa Khan ◽  
Ze-Yun Fan ◽  
Dylan O’Neill Rothenberg ◽  
Jing Peng ◽  
Muhammad Hafeez ◽  
...  

Ultraviolet (UV) radiation significantly affects insect life and, as a result, has been widely used to control different invertebrate pests. The current results demonstrate that when Bemisia tabaci first instar nymphs are exposed to UV-A light for 12, 24, 48, and 72 h, their developmental and biological parameters are negatively affected by UV-A exposure; the effect increased with an increase in exposure time. We hypothesized that UV-A light is compatible with other biological control agents. Results showed that when the entomopathogenic fungus Cordyceps fumosorosea was applied to third instar nymphs of B. tabaci previously exposed to UV-A light, the LC50 was 3.4% lower after 72 h of exposure to UV-A light compared to the control. However, when the fungus was exposed to UV-A light, its virulence decreased with an increase in UV-A exposure time. The parasitism rate of Encarsia formosa against 24 h UV-A-exposed third instar nymphs of B. tabaci increased while the adult emergence from parasitized nymphs was not affected after UV-A light exposure. Parasitism rate was significantly reduced however following E. formosa exposure to UV-A light; but again, adult emergence was not affected from parasitized nymphs. The percentage mortality of E. formosa increased with increasing exposure time to UV-A light. The enzyme activity of SOD, CAT, GST, and AChE and the energy reserve contents were negatively affected due to UV-A exposure. Collectively, this study has demonstrated that UV-A light significantly suppresses the immune system of B. tabaci and that UV-A light is compatible with other biological control agents if it is applied separately from the biological agent.


Weed Science ◽  
2009 ◽  
Vol 57 (5) ◽  
pp. 521-525 ◽  
Author(s):  
Shouhui Wei ◽  
Chaoxian Zhang ◽  
Xiangju Li ◽  
Hailan Cui ◽  
Hongjuan Huang ◽  
...  

Buffalobur is a noxious and invasive weed species native to North America. The influence of environmental factors on seed germination and seedling emergence of buffalobur were evaluated in laboratory and greenhouse experiments. The germination of buffalobur seeds occurred at temperatures ranging from 12.5 to 45 C, with optimum germination attained between 25 and 35 C. Buffalobur seeds germinated equally well under both a 14-h photoperiod and continuous darkness; however, prolonged light exposure (≥ 16 h) significantly inhibited the seed germination. Buffalobur seed is rather tolerant to low water potential and high salt stress, as germination was 28 and 52% at osmotic potentials of −1.1 MPa and salinity level of 160 mM, respectively. Medium pH has no significant effect on seed germination; germination was greater than 95% over a broad pH range from 3 to 10. Seedling emergence was higher (85%) for seeds buried at a soil depth of 2 cm than for those placed on the soil surface (32%), but no seedlings emerged when burial depth reached 8 cm. Knowledge of germination biology of buffalobur obtained in this study will be useful in predicting the potential distribution area and developing effective management strategies for this species.


2016 ◽  
Vol 30 (1) ◽  
pp. 263-270 ◽  
Author(s):  
Scott N. White ◽  
Nathan S. Boyd

Experiments were conducted to determine the effects of dry heat, direct flame, and straw burning on germination of several weed species from lowbush blueberry fields. Dry heat experiments were designed as factorial arrangements of temperature (100, 200, and 300 C in experiment 1 and room temperature, 100, 200, and 300 C in experiment 2) and exposure time (0, 5, 10, 20, 40, and 80 s in experiment 1 and 2, 5, 10, and 20 s in experiment 2) to determine the exposure time required to reduce germination for each temperature. Susceptibility to dry heat varied across species tested, but germination of spreading dogbane, meadow salsify, fireweed, and hair fescue seeds collected from lowbush blueberry fields in Nova Scotia, Canada generally declined exponentially as a function of duration of heat exposure at the temperatures tested. Germination decreased more rapidly at higher temperatures in all species, although the duration of heat exposure required to reduce germination by 50 and 90% varied across temperatures and species. Exposure of seeds to direct flame rapidly reduced germination, with less than 1 s of exposure required to reduce seed germination of witchgrass, spreading dogbane, and meadow salsify by > 90%. Straw burning did not consistently reduce germination of hair fescue or winter bentgrass, indicating that a surface burn occurring above weed seeds may not be consistently effective at reducing seed viability. These results provide important estimates of the temperature and exposure times required to reduce viability of weed seeds in lowbush blueberry fields and suggest that thermal technologies that expose weed seeds to direct flame will be the most consistent in reducing seed viability.


2000 ◽  
Vol 125 (1) ◽  
pp. 31-35 ◽  
Author(s):  
Uulke van Meeteren ◽  
Annie van Gelder

When compared with exposure to darkness, exposing Hibiscus rosa-sinensis L. `Nairobi' plants to red light (635 to 685 nm, 2.9 μmol·m-2·s-1) delayed flower bud abscission, while exposure to far-red light (705 to 755 nm, 1.7 μmol·m-2·s-1) accelerated this process. Flower bud abscission in response to light quality appears to be controlled partly by the presence of leaves. The delay of bud abscission was positively correlated to the number of leaves being exposed to red light. Excluding the flower buds from exposure to red or far-red light, while exposing the remaining parts of the plants to these light conditions, did not influence the effects of the light exposure on bud abscission. Exposing only the buds to red light by the use of red light-emitting diodes (0.8 μmol·m-2·s-1) did not prevent dark-induced flower bud abscission. Exposing the whole plants, darkness or far-red light could only induce flower bud abscission when leaves were present; bud abscission was totally absent when all leaves were removed. To prevent flower bud abscission, leaves had to be removed before, or at the start of, the far-red light treatment. These results suggest that in darkness or far-red light, a flower bud abscission-promoting signal from the leaves may be involved.


2015 ◽  
Vol 2 (1) ◽  
pp. 317 ◽  
Author(s):  
Kumala Dewi ◽  
Parmi _

<p>Environmental factors such as the existence of exogenous sugar and light quality during seed germination may affect the growth and quality of seedlings. This experiment was aimed to evaluate the effect of glucose and light quality on seed germination percentage, vitamine E and chlorophyll content in green bean sprout (Vigna radiata (L.) Wilcz). The experiment design used was 5x5 factorial. The main factor was glucose concentration which consisted of 5 levels (0%, 0.5%, 1%, 2.5% or 5 %). The second factor was variation of light quality which consists of 3 different light spectrums namely blue, red or green as well as sunlight and dark condition. Seeds were selected, sterilized and germinated in a petridish containing various level of glucose. Fourty seeds were germinated in each petridish and 5 replicates were used per treatment. Petridish with seeds in it were then placed in a growth chamber having different light quality (blue, red or green), under dark condition or light condition. Growth parameters observed were germination percentage and height of bean sprout. In addition, vitamine E and chlorophyll conten were determined using spectrophotometer. Data were analyzed by using analysis of variance (ANAVA) and followed by Duncan’s Multiple Range Test (DMRT) at significant level of 5%. The results showed that increasing glucose content caused reduction in the germination percentage and height of bean sprouts whereas green and blue light also reduced seed germination. The vitamine E content in green bean sprout grown under red and blue light was relatively similar compared to those grown under sunlight or dark condition, however, green light decreased the vitamine E content in green bean sprout. In addition, the existence of glucose and light quality influenced chlorophyll content in green bean sprout.</p><p><br /><strong>Keywords</strong> : glucose, light quality, green bean, vitamine E, chlorophyll content.</p>


2019 ◽  
Vol 97 (3) ◽  
pp. 413 ◽  
Author(s):  
Valeria Flores-Enríquez ◽  
Guillermo Castillo ◽  
Margarita Collazo-Ortega

<p><strong>Background</strong>: Podostemaceae are extremely susceptible to local extinction by habitat loss. Since ~70 % of the river systems in Mexico show some degree of water contamination, it is relevant to generate information about seed storage and germination behavior to design germplasm conservation strategies (<em>e.g</em>., <em>ex situ</em> seed banks) of Mexican podostemads.</p><p><strong>Hypotheses</strong>: Seed germination decreases as seed storage time increases. Further, light quality, temperature and collection site influence similarly the germination response of both species.</p><p><strong>Studied species</strong>: <em>Marathrum foeniculaceum</em> Humb. &amp; Bonpl., <em>Noveloa coulteriana</em> (Tul.)<em> </em>C. Philbrick</p><p><strong>Study site and years of study</strong>: 13 different seeds collections (1996-2013), at four locations in the rivers Horcones and Arroyo del Rincon Jalisco, México. </p><p><strong>Methods</strong>: A germination chamber experiment was performed to evaluate the effect of temperature, light quality and storage time on the germination of both species.</p><p><strong>Results</strong>: Seeds lose viability after nine years of storage. In both species, the time to reach the highest Accumulated Germination Percentage (AGP) was faster in seeds of one-two yr compared to seeds of six-seven yr. <em>N. coulteriana</em> have significant differences in Final Germination Percentage (FGP) between collection rivers. Storage time affects AGP of <em>N. </em>coulteriana more than in <em>M. foeniculaceum.</em></p><p><strong>Conclusions</strong>: Both species can form <em>ex situ</em> seed banks up to 8 yr age in paper bags storage. <em>N. coulteriana</em> is more susceptible to variation in storage conditions compared to <em>M. </em><em>foeniculaceum</em>. Collection site affect seed germination after storing.  Long-term conventional <em>ex situ</em> seed germination storage is not a viable strategy to conserve germplasm of Podostemaceae.</p>


Sign in / Sign up

Export Citation Format

Share Document