Transport across Caco-2 monolayers of peptides arising from in vitro digestion of bovine milk proteins

2013 ◽  
Vol 139 (1-4) ◽  
pp. 203-212 ◽  
Author(s):  
Gianluca Picariello ◽  
Giuseppe Iacomino ◽  
Gianfranco Mamone ◽  
Pasquale Ferranti ◽  
Olga Fierro ◽  
...  
1998 ◽  
Vol 65 (4) ◽  
pp. 697-701 ◽  
Author(s):  
CHUN W. WONG ◽  
DENNIS L. WATSON ◽  
GEOFFREY O. REGESTER ◽  
GEOFFREY W. SMITHERS

Bovine milk contains a variety of proteins and peptides that are biologically active (Ogra & Ogra, 1978; Duncan & McArthur, 1981; Newby et al. 1982; Juto, 1985; Stoeck et al. 1989; Mincheva-Nilsson et al. 1990; Watson, 1990; Barta et al. 1991; Politis et al. 1991; Fiat et al. 1993). Our laboratory has a long-term interest in some purified milk proteins, particularly lactoferrin (LF), lactoperoxidase (LP) and β-casein (β-CN), which have been shown to be immunologically significant. Some of our recent studies on these bovine milk proteins, particularly β-CN, indicated that their in vitro immunological effects did not always parallel their in vivo activities (Wong et al. 1996a, b; 1997a, b). This study was designed to investigate and compare the capacity of these purified bovine milk proteins to modulate a range of components that are vital to in vivo immune responses in sheep, with a view to providing further information on their potential in biomedical applications. To achieve this objective, a sensitive lymphatic cannulation model was employed that allows in vivo immune components and their functions to be measured in lymph collected under physiological conditions.


2018 ◽  
Vol 101 (10) ◽  
pp. 8726-8736 ◽  
Author(s):  
Dimuthu Bogahawaththa ◽  
Rabia Ashraf ◽  
Jayani Chandrapala ◽  
Osaana Donkor ◽  
Todor Vasiljevic

2016 ◽  
Vol 190 ◽  
pp. 581-587 ◽  
Author(s):  
Andrew B. Do ◽  
Kristina Williams ◽  
Ondulla T. Toomer

Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 410 ◽  
Author(s):  
Kristine Bach Korsholm Knudsen ◽  
Christine Heerup ◽  
Tine Røngaard Stange Jensen ◽  
Xiaolu Geng ◽  
Nikolaj Drachmann ◽  
...  

Efficient lipid digestion in formula-fed infants is required to ensure the availability of fatty acids for normal organ development. Previous studies suggest that the efficiency of lipid digestion may depend on whether lipids are emulsified with soy lecithin or fractions derived from bovine milk. This study, therefore, aimed to determine whether emulsification with bovine milk-derived emulsifiers or soy lecithin (SL) influenced lipid digestion in vitro and in vivo. Lipid digestibility was determined in vitro in oil-in-water emulsions using four different milk-derived emulsifiers or SL, and the ultrastructural appearance of the emulsions was assessed using electron microscopy. Subsequently, selected emulsions were added to a base diet and fed to preterm neonatal piglets. Initially, preterm pigs equipped with an ileostomy were fed experimental formulas for seven days and stoma output was collected quantitatively. Next, lipid absorption kinetics was studied in preterm pigs given pure emulsions. Finally, complete formulas with different emulsions were fed for four days, and the post-bolus plasma triglyceride level was determined. Milk-derived emulsifiers (containing protein and phospholipids from milk fat globule membranes and extracellular vesicles) showed increased effects on fat digestion compared to SL in an in vitro digestion model. Further, milk-derived emulsifiers significantly increased the digestion of triglyceride in the preterm piglet model compared with SL. Ultra-structural images indicated a more regular and smooth surface of fat droplets emulsified with milk-derived emulsifiers relative to SL. We conclude that, relative to SL, milk-derived emulsifiers lead to a different surface ultrastructure on the lipid droplets, and increase lipid digestion.


2016 ◽  
Vol 96 (5) ◽  
pp. 657-676 ◽  
Author(s):  
Davide Tagliazucchi ◽  
Ahmed Helal ◽  
Elena Verzelloni ◽  
Angela Conte

2018 ◽  
Vol 9 (10) ◽  
pp. 5198-5208 ◽  
Author(s):  
Hanjie Yu ◽  
Yaogang Zhong ◽  
Zhiwei Zhang ◽  
Xiawei Liu ◽  
Kun Zhang ◽  
...  

The bovine milk proteins have a wide range of functions, but the role of the attached glycans in their biological functions has not been fully understood yet.


Sign in / Sign up

Export Citation Format

Share Document