Effect of barrier properties of zein colloidal particles and oil-in-water emulsions on oxidative stability of encapsulated bioactive compounds

2015 ◽  
Vol 43 ◽  
pp. 82-90 ◽  
Author(s):  
Yuanjie Pan ◽  
Rohan V. Tikekar ◽  
Min S. Wang ◽  
Roberto J. Avena-Bustillos ◽  
Nitin Nitin
Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2301
Author(s):  
Man Zhang ◽  
Bin Liang ◽  
Hongjun He ◽  
Changjian Ji ◽  
Tingting Cui ◽  
...  

Appropriate pretreatment of proteins and addition of xanthan gum (XG) has the potential to improve the stability of oil-in-water (O/W) emulsions. However, the factors that regulate the enhancement and the mechanism are still not clear, which restricts the realization of improving the emulsion stability by directional design of its structure. Therefore, the effects of whey protein micro-gel particles (WPMPs) and WPMPs-XG complexes on the stability of O/W emulsion were investigated in this article to provide theoretical support. WPMPs with different structures were prepared by pretreatment (controlled high-speed shear treatment of heat-set WPC gels) at pH 3.5–8.5. The impact of initial WPC structure and XG addition on Turbiscan Indexes, mean droplet size and the peroxide values of O/W emulsions was investigated. The results indicate that WPMPs and XG can respectively inhibit droplet coalescence and gravitational separation to improve the physical stability of WPC-stabilized O/W emulsions. The pretreatment significantly enhanced the oxidative stability of WPC-stabilized O/W emulsions. The addition of XG did not necessarily enhance the oxidative stability of O/W emulsions. Whether the oxidative stability of the O/W emulsion with XG is increased or decreased depends on the interface structure of the protein-XG complex. This study has significant implications for the development of novel structures containing lipid phases that are susceptible to oxidation.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1293
Author(s):  
Alime Cengiz ◽  
Karin Schroën ◽  
Claire Berton-Carabin

To encapsulate soluble iron, liposomes were prepared using unsaturated phospholipids (phosphatidylcholine from egg yolk), leading to high encapsulation efficiencies (82–99%). The iron concentration affected their oxidative stability: at 0.2 and 1 mM ferrous sulfate, the liposomes were stable, whereas at higher concentrations (10 and 48 mM), phospholipid oxidation was considerably higher. When applied in oil-in-water (O/W) emulsions, emulsions with liposomes containing low iron concentrations were much more stable to lipid oxidation than those added with liposomes containing higher iron concentrations, even though the overall iron concentration was similar (0.1 M). Iron-loaded liposomes thus have an antioxidant effect at high phospholipid-to-iron ratio, but act as pro-oxidants when this ratio is too low, most likely as a result of oxidation of the phospholipids themselves. This non-monotonic effect can be of crucial importance in the design of iron-fortified foods.


2019 ◽  
Vol 99 (6) ◽  
pp. 2855-2864 ◽  
Author(s):  
Gabriela Marcelino ◽  
Juliana R Donadon ◽  
Anderson RL Caires ◽  
Flavio S Michels ◽  
Lincoln CS Oliveira ◽  
...  

2020 ◽  
Vol 562 ◽  
pp. 352-362 ◽  
Author(s):  
Marlene Costa ◽  
Josefa Freiría-Gándara ◽  
Sonia Losada-Barreiro ◽  
Fátima Paiva-Martins ◽  
Carlos Bravo-Díaz

2017 ◽  
Vol 8 (4) ◽  
pp. 1547-1557 ◽  
Author(s):  
Jennifer Borreani ◽  
María Espert ◽  
Ana Salvador ◽  
Teresa Sanz ◽  
Amparo Quiles ◽  
...  

Cellulose ether emulsions have good physical and oxidative stability and can delay in vitro lipid digestion. HMC emulsions inhibit lipolysis more than others and could enhance gastric fullness and satiety.


Sign in / Sign up

Export Citation Format

Share Document