Structural changes in oat milk and an oat milk‒bovine skim milk blend during dynamic in vitro gastric digestion

2021 ◽  
pp. 107311
Author(s):  
Xin Wang ◽  
Aiqian Ye ◽  
Anant Dave ◽  
Harjinder Singh
2017 ◽  
Vol 118 (9) ◽  
pp. 686-697 ◽  
Author(s):  
Galia Zamaratskaia ◽  
Daniel P. Johansson ◽  
Matheus Antunes Junqueira ◽  
Linda Deissler ◽  
Maud Langton ◽  
...  

AbstractSourdough fermentation is considered to have beneficial effects on postprandial satiety and metabolic responses, but studies demonstrating effects at physiological conditions are lacking. The aim of this acute breakfast intervention study was to determine the effect of consumption of sourdough-fermented and unfermented rye crispbread on self-rated appetite, postprandial glucose and insulin response in healthy subjects. In all, twenty-four Swedish adults were included in a single-blinded, randomised cross-over trial. Three crispbreads (sourdough-fermented and unfermented whole grain rye and yeast-fermented refined wheat as control) were consumed as part of a standardised breakfast. Subjective appetite score, assessed using visual analogue scale, and plasma glucose and insulin concentrations were measured at baseline and postprandially until 360 and 240 min, respectively. Structural changes and viscosity during mastication and gastric digestion were investigated usingin vitromethods. Hunger and desire to eat were lower (P<0·05) based on AUC measurements after intake of sourdough-fermented rye crispbread compared with after intake of yeast-fermented refined wheat crispbread. On the basis of AUC (0–230 min), insulin response was lowest after intake of unfermented rye crispbread compared with sourdough-fermented rye and yeast-fermented refined wheat crispbread. Degradation of viscous fibres and faster bolus disintegration for the sourdough-fermented bread may partly explain the less favourable metabolic responses compared with unfermented bread. Our results showed that food processing affects the composition and structural characteristics of rye bread, which has implications for appetite and metabolic responses.


Foods ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 796
Author(s):  
Maria Espert ◽  
Teresa Sanz ◽  
Ana Salvador

This study investigated the texture properties and fat digestibility of new spreadable chocolate creams formulated with an emulsion composed of milk fat and a cellulose ether as a fat source. The spreadability was analysed at 20 °C and compared with a commercial spreadable cream formulated with palm fat. Structural changes in the creams after the in vitro oral and gastric digestion stages were evaluated; lipid digestibility was determined by titration with NaOH during intestinal digestion. Spreadability tests showed the spreads were similar. After oral digestion, the commercial spread showed an increase in extrusion force because of flocculation induced by saliva, an effect not observed in spreads with cellulose ether. Digestibility determination showed lower values for the reformulated spreads. Therefore, milk fat-cellulose ether based emulsions offer an alternative to achieve reformulated spreadable creams, with physical properties similar to those of commercial products but providing reduced fat content and lower lipid digestibility, without compromising the quality of the final product.


2021 ◽  
Vol 12 (6) ◽  
pp. 2760-2771
Author(s):  
Kinley Choki ◽  
Siqi Li ◽  
Aiqian Ye ◽  
Geoffrey B. Jameson ◽  
Harjinder Singh

The dissolution behavior and the structural changes of nHA during dynamic gastric digestion and intestinal digestion were examined. Milk formed a structural clot and significantly retarded the dissolution of nHA during gastric digestion.


2021 ◽  
Vol 11 (2) ◽  
pp. 811
Author(s):  
Federica Ianni ◽  
Alessandra Anna Altomare ◽  
Beniamino T. Cenci-Goga ◽  
Francesca Blasi ◽  
Luca Grispoldi ◽  
...  

Among various food sources, milk proteins remain the major vector for functional peptides endowed with several biological activities. Particularly, the proteolytic activity of lactic acid bacteria during milk fermentation has been one of the most followed strategies to produce bioactive peptides. In the present study, the exploration of the activity of several starter cultures, at different fermentation times, was firstly investigated by reversed phase-high performance liquid chromatography. Among the tested strains, Lactobacillus helveticus showed a higher proteolytic activity and it was submitted to further investigations by changing the fermentation substrate (skim milk, brain heart infusion, peptone water) as well as the extraction strategy (trichloroacetic acid vs. glass beads). The chromatographic analyses and the in vitro antioxidant and antihypertensive assays highlighted considerable differences for L. helveticus hydrolysates from different substrates, while a negligible impact by the two extraction protocols emerged. Furthermore, nano-high pressure liquid chromatography coupled with a high resolution mass spectrometry analyzer allowed the preliminary discrimination of fractions from fermented skim milk, likely responsible for the found activity. The obtained results suggest the possibility of varying the fermentation parameters in order to maximize the functional effects of the bioactive peptides.


2021 ◽  
Vol 20 ◽  
pp. 117693512110092
Author(s):  
Abicumaran Uthamacumaran ◽  
Narjara Gonzalez Suarez ◽  
Abdoulaye Baniré Diallo ◽  
Borhane Annabi

Background: Vasculogenic mimicry (VM) is an adaptive biological phenomenon wherein cancer cells spontaneously self-organize into 3-dimensional (3D) branching network structures. This emergent behavior is considered central in promoting an invasive, metastatic, and therapy resistance molecular signature to cancer cells. The quantitative analysis of such complex phenotypic systems could require the use of computational approaches including machine learning algorithms originating from complexity science. Procedures: In vitro 3D VM was performed with SKOV3 and ES2 ovarian cancer cells cultured on Matrigel. Diet-derived catechins disruption of VM was monitored at 24 hours with pictures taken with an inverted microscope. Three computational algorithms for complex feature extraction relevant for 3D VM, including 2D wavelet analysis, fractal dimension, and percolation clustering scores were assessed coupled with machine learning classifiers. Results: These algorithms demonstrated the structure-to-function galloyl moiety impact on VM for each of the gallated catechin tested, and shown applicable in quantifying the drug-mediated structural changes in VM processes. Conclusions: Our study provides evidence of how appropriate 3D VM compression and feature extractors coupled with classification/regression methods could be efficient to study in vitro drug-induced perturbation of complex processes. Such approaches could be exploited in the development and characterization of drugs targeting VM.


Sign in / Sign up

Export Citation Format

Share Document