Aspirin Induces Sirtuin1 Gene Expression via the Production of Hydrogen Peroxide

2010 ◽  
Vol 49 ◽  
pp. S193-S194
Author(s):  
Sampath Parthasarathy ◽  
Pratibha Kamble
2000 ◽  
Vol 355 (1402) ◽  
pp. 1465-1475 ◽  
Author(s):  
Graham Noctor ◽  
Sonja Veljovic-Jovanovic ◽  
Christine H. Foyer

Photosynthesis has a high capacity for production of hydrogen peroxide (H 2 O 2 ), but the intracellular levels of this relatively weak oxidant are controlled by the antioxidant system, comprising a network of enzymatic and non-enzymatic components that notably includes reactions linked to the intracellular ascorbate and glutathione pools. Mutants and transformed plants with specific decreases in key components offer the opportunity to dissect the complex system that maintains redox homeostasis. Since H 2 O 2 is a signal-transducing molecule relaying information on intracellular redox state, the pool size must be rigorously controlled within each compartment of the cell. This review focuses on compartment-specific differences in the stringency of redox coupling between ascorbate and glutathione, and the significance this may have for the flexibility of the control of gene expression that is linked to photosynthetic H 2 O 2 production.


2020 ◽  
Vol 63 (9-10) ◽  
pp. 895-912
Author(s):  
Haiyan Song ◽  
Lishan Wei ◽  
Luning Chen ◽  
Han Zhang ◽  
Ji Su

iScience ◽  
2021 ◽  
Vol 24 (2) ◽  
pp. 102094
Author(s):  
Rusen Zou ◽  
Aliyeh Hasanzadeh ◽  
Alireza Khataee ◽  
Xiaoyong Yang ◽  
Mingyi Xu ◽  
...  

2004 ◽  
Vol 28 (12) ◽  
pp. 1431 ◽  
Author(s):  
Wei-Liang Feng ◽  
Yong Cao ◽  
Nan Yi ◽  
Wei-Lin Dai ◽  
Kang-Nian Fan

1987 ◽  
Vol 253 (4) ◽  
pp. C495-C499 ◽  
Author(s):  
P. D. Walker ◽  
S. V. Shah

Agents that affect mitochondrial respiration have been shown to enhance the generation of reactive oxygen metabolites. On the basis of the well-demonstrated ability of gentamicin to alter mitochondrial respiration (stimulation of state 4 and inhibition of state 3), it was postulated that gentamicin may enhance the generation of reactive oxygen metabolites by renal cortical mitochondria. The aim of this study was to examine the effect of gentamicin on the production of hydrogen peroxide (measured as the decrease in scopoletin fluorescence) in rat renal cortical mitochondria. The hydrogen peroxide generation by mitochondria was enhanced from 0.17 +/- 0.02 nmol . mg-1 . min-1 (n = 14) in the absence of gentamicin to 6.21 +/- 0.67 nmol . mg-1 . min-1 (n = 14) in the presence of 4 mM gentamicin. This response was dose dependent with a significant increase observed at even the lowest concentration of gentamicin tested, 0.01 mM. Production of hydrogen peroxide was not increased when gentamicin was added to incubation media in which mitochondria or substrate was omitted or heat-inactivated mitochondria were used. The gentamicin-induced change in fluorescence was completely inhibited by catalase (but not by heat-inactivated catalase), indicating that the decrease in fluorescence was due to hydrogen peroxide. Thus this study demonstrates that gentamicin enhances the production of hydrogen peroxide by mitochondria. Because of their well-documented cytotoxicity, reactive oxygen metabolites may play a critical role in gentamicin nephrotoxicity.


Nutrients ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1920 ◽  
Author(s):  
Carla Busquets-Cortés ◽  
Xavier Capó ◽  
Emma Argelich ◽  
Miguel Ferrer ◽  
David Mateos ◽  
...  

Reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) can exert opposed effects depending on the dosage: low levels can be involved in signalling and adaptive processes, while higher levels can exert deleterious effects in cells and tissues. Our aim was to emulate a chronic ex vivo oxidative stress situation through a 2 h exposure of immune cells to sustained H2O2 produced by glucose oxidase (GOX), at high or low production rate, in order to determine dissimilar responses of peripheral blood mononuclear cells (PBMCs) and neutrophils on ROS and cytokine production, and mitochondrial dynamics-related proteins, pro/anti-inflammatory and anti-oxidant gene expression. Immune cells were obtained from subjects with metabolic syndrome. H2O2 at low concentrations can trigger a transient anti-inflammatory adiponectin secretion and reduced gene expression of toll-like receptors (TLRs) in PBMCs but may act as a stimulator of proinflammatory genes (IL6, IL8) and mitochondrial dynamics-related proteins (Mtf2, NRF2, Tfam). H2O2 at a high concentration enhances the expression of pro-inflammatory genes (TLR2 and IL1β) and diminishes the expression of mitochondrial dynamics-related proteins (Mtf1, Tfam) and antioxidant enzymes (Cu/Zn SOD) in PBMCs. The GOX treatments produce dissimilar changes in immune cells: Neutrophils were more resistant to H2O2 effects and exhibited a more constant response in terms of gene expression than PBMCs. We observe emerging roles of H2O2 in mitochondrial dynamics and redox and inflammation processes in immune cells.


Nutrients ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1871
Author(s):  
Karolina Chodkowska ◽  
Anna Ciecierska ◽  
Kinga Majchrzak ◽  
Piotr Ostaszewski ◽  
Tomasz Sadkowski

Gamma-oryzanol (GO) is a popular supplement for performance horses, dogs, and humans. Previous studies indicated that GO supplementation decreases creatine kinase activity and lactate level after exercise and may affect oxidative stress in Thoroughbred horses. GO may change genes expression in equine satellite cells (ESC). The purpose of this study was to evaluate the effect of GO on miRNA, gene expression, oxidative stress, and cell damage and viability in differentiating ESC pretreated with hydrogen peroxide (H2O2). ESCs were obtained from a young horse’s skeletal muscle. ESCs were pre-incubated with GO (24 h) and then exposed to H2O2 for one hour. For the microRNA and gene expression assessment, the microarray technique was used. Identified miRNAs and genes were validated using real time-quantitative polymerase chain reaction. Several tests related to cell viability, cell damage, and oxidative stress were performed. The microarray analysis revealed differences in 17 miRNAs and 202 genes between GO-treated and control ESC. The tests related to apoptosis, cell viability, and oxidative stress showed that GO affects these processes to varying degrees. Our results suggest that GO can change miRNA and gene expression and may impact the processes involved in tissue repairing after an injury.


Sign in / Sign up

Export Citation Format

Share Document