scholarly journals Effects of Millimolar Steady-State Hydrogen Peroxide Exposure on Inflammatory and Redox Gene Expression in Immune Cells from Humans with Metabolic Syndrome

Nutrients ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1920 ◽  
Author(s):  
Carla Busquets-Cortés ◽  
Xavier Capó ◽  
Emma Argelich ◽  
Miguel Ferrer ◽  
David Mateos ◽  
...  

Reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) can exert opposed effects depending on the dosage: low levels can be involved in signalling and adaptive processes, while higher levels can exert deleterious effects in cells and tissues. Our aim was to emulate a chronic ex vivo oxidative stress situation through a 2 h exposure of immune cells to sustained H2O2 produced by glucose oxidase (GOX), at high or low production rate, in order to determine dissimilar responses of peripheral blood mononuclear cells (PBMCs) and neutrophils on ROS and cytokine production, and mitochondrial dynamics-related proteins, pro/anti-inflammatory and anti-oxidant gene expression. Immune cells were obtained from subjects with metabolic syndrome. H2O2 at low concentrations can trigger a transient anti-inflammatory adiponectin secretion and reduced gene expression of toll-like receptors (TLRs) in PBMCs but may act as a stimulator of proinflammatory genes (IL6, IL8) and mitochondrial dynamics-related proteins (Mtf2, NRF2, Tfam). H2O2 at a high concentration enhances the expression of pro-inflammatory genes (TLR2 and IL1β) and diminishes the expression of mitochondrial dynamics-related proteins (Mtf1, Tfam) and antioxidant enzymes (Cu/Zn SOD) in PBMCs. The GOX treatments produce dissimilar changes in immune cells: Neutrophils were more resistant to H2O2 effects and exhibited a more constant response in terms of gene expression than PBMCs. We observe emerging roles of H2O2 in mitochondrial dynamics and redox and inflammation processes in immune cells.

2020 ◽  
Vol 16 ◽  
Author(s):  
Niloofar Ghorbani ◽  
Maryam Sahebari ◽  
Mahmoud Mahmoudi ◽  
Maryam Rastin ◽  
Shahrzad Zamani ◽  
...  

Objective: Rheumatoid arthritis (RA) is the most prevalent autoimmune arthritis. Berberine is an alkaloid isolated from Berberis vulgaris and its anti-inflammatory effect has been identified. Method: Twenty newly diagnosed RA patients and 20 healthy controls participated. Peripheral mononuclear cells were prepared and stimulated with bacterial lipopolysachharide (LPS,1 µg/ml), exposed to different concentrations of berberine (10 and 50µM) and dexamethasone (10-7 M) as a reference. Toxicity of compounds was evaluated by WST-1 assay. Expression of TNF-α and IL-1β were determined by quantitative real-time PCR. Protein level of secreted TNF-α and IL1β were measured by using ELISA. Result: Berberine did not have any toxic effect on cells, whereas Lipopolysachharide (LPS) stimulation caused a noticeable rise in TNF-α and IL-1β production. Berberine markedly downregulated the expression of both TNF-α and IL1β and inhibits TNF-α and IL-1β secretion from LPS-stimulated PBMCs. Discussion: This study provided molecular basis for anti-inflammatory effect of berberine on human mononuclear cells through the suppression of TNF-a and IL-1secretion. Our findings highlighted the significant inhibitory effect of berberine on proinflammatory responses of mononuclear cells from rheumatoid arthritis individuals, which may be responsible for antiinflammatory property of Barberry. We observed that berberine at high concentration exhibited anti-inflammatory effect in PBMCs of both healthy and patient groups by suppression of TNF-a and IL-1cytokines at both mRNA and protein levels. Conclusions: Berberine may inhibit the gene expression and production of pro-inflammatory cytokines by mononuclear cells in rheumatoid arthritis and healthy individuals without affecting cells viability. Future studies with larger sample size is needed to prove the idea.


2018 ◽  
Vol 61 (4) ◽  
pp. 173-184 ◽  
Author(s):  
Maria Jacoba Kruger ◽  
Maria Martha Conradie ◽  
Magda Conradie ◽  
Mari van de Vyver

Obesity-associated inflammatory mechanisms play a key role in the pathogenesis of metabolic-related diseases. Failure of anti-inflammatory control mechanisms within adipose tissue and peripheral blood mononuclear cells (PBMCs) have been implicated in disease progression. This study investigated the efficacy of allogeneic adipose tissue-derived mesenchymal stem cells conditioned media (ADSC-CM) to counteract persistent inflammation by inducing an anti-inflammatory phenotype and cytokine response within PBMCs derived from patients with and without metabolic syndrome. Forty-six (n = 46) mixed ancestry females (18–45 years) were subdivided into (a) healthy lean (HL) (n = 10) (BMI <25 kg/m2), (b) overweight/obese (OW/OB) (BMI ≥25 kg/m2, <3 metabolic risk factors) (n = 22) and (c) metabolic syndrome (MetS) (visceral adiposity, ≥3 metabolic risk factors) (n = 14) groups. Body composition (DXA scan), metabolic (cholesterol, HDL, LDL, triglycerides, blood glucose) and inflammatory profiles (38-Plex cytokine panel) were determined. PBMCs were isolated from whole blood and treated ex vivo with either (i) autologous participant-derived serum, (ii) ADSCs-CM or (iii) a successive treatment regime. The activation status (CD11b+) and intracellular cytokine (IL6, IL10, TNFa) expression were determined in M1 (CD68+CD206−CD163−) and M2 (CD68+CD163+ CD206+) macrophage populations using flow cytometry. ADSC-CM treatment, promoted a M2 macrophage phenotype and induced IL10 expression, this was most pronounced in the OW/OB group. This response is likely mediated by multiple complementing factors within ADSC-CM, yet to be identified. This study is the first to demonstrate the therapeutic potential of ADSC-CM to restore the inflammatory balance in immune compromised obese individuals.


2019 ◽  
Vol 20 (11) ◽  
pp. 920-933 ◽  
Author(s):  
Lucía Gato-Calvo ◽  
Tamara Hermida-Gómez ◽  
Cristina R. Romero ◽  
Elena F. Burguera ◽  
Francisco J. Blanco

Background: Platelet Rich Plasma (PRP) has recently emerged as a potential treatment for osteoarthritis (OA), but composition heterogeneity hampers comparison among studies, with the result that definite conclusions on its efficacy have not been reached. Objective: 1) To develop a novel methodology to prepare a series of standardized PRP releasates (PRP-Rs) with known absolute platelet concentrations, and 2) To evaluate the influence of this standardization parameter on the anti-inflammatory properties of these PRP-Rs in an in vitro and an ex vivo model of OA. Methods: A series of PRPs was prepared using the absolute platelet concentration as the standardization parameter. Doses of platelets ranged from 0% (platelet poor plasma, PPP) to 1.5·105 platelets/µl. PRPs were then activated with CaCl2 to obtain releasates (PRP-R). Chondrocytes were stimulated with 10% of each PRP-R in serum-free culture medium for 72 h to assess proliferation and viability. Cells were co-stimulated with interleukin (IL)-1β (5 ng/ml) and 10% of each PRP-R for 48 h to determine the effects on gene expression, secretion and intra-cellular content of common markers associated with inflammation, catabolism and oxidative stress in OA. OA cartilage explants were co-stimulated with IL-1β (5 ng/ml) and 10% of either PRP-R with 0.75·105 platelets/µl or PRP-R with 1.5·105 platelets/µl for 21 days to assess matrix inflammatory degradation. Results: Chondrocyte viability was not affected, and proliferation was dose-dependently increased. The gene expression of all pro-inflammatory mediators was significantly and dose-independently reduced, except for that of IL-1β and IL-8. Immunoblotting corroborated this effect for inducible NO synthase (NOS2). Secreted matrix metalloproteinase-13 (MMP-13) was reduced to almost basal levels by the PRP-R from PPP. Increasing platelet dosage led to progressive loss to this anti-catabolic ability. Safranin O and toluidine blue stains supported the beneficial effect of low platelet dosage on cartilage matrix preservation. Conclusion: We have developed a methodology to prepare PRP releasates using the absolute platelet concentration as the standardization parameter. Using this approach, the composition of the resulting PRP derived product is independent of the donor initial basal platelet count, thereby allowing the evaluation of its effects objectively and reproducibly. In our OA models, PRP-Rs showed antiinflammatory, anti-oxidant and anti-catabolic properties. Platelet enrichment could favor chondrocyte proliferation but is not necessary for the above effects and could even be counter-productive.


2020 ◽  
Vol 20 (8) ◽  
pp. 1282-1294
Author(s):  
Meroua Bouchemal ◽  
Djennat Hakem ◽  
Malha Azzouz ◽  
Chafia Touil-Boukoffa ◽  
Dalila Mezioug

Background: Metabolic syndrome (MetS) is a combination of metabolic disorders with increased risks for several diseases, such as cardiovascular diseases and diabetes. It is associated with the presence of various inflammatory molecules. Vitamin D plays an important role in the regulation of metabolism homeostasis. Objective: The main goal of this work is to investigate vitamin D levels among Algerian MetS patients and its possible outcomes on key molecules of the immune response, as well, the immunomodulatory effects of its active metabolite. Methods: We evaluated vitamin D status by the electrochemiluminescence method, Nitric Oxide (NO) levels by the Griess method and Matrix Metalloproteinases (MMPs) activities such as MMP-2 and MMP-9 by zymography in plasma of patients and healthy controls (HC). The immunomodulatory effects of the active metabolite of vitamin D (α-25 (OH)2D3) on the production of NO, IL-6, IL-10, TGF- β and s-CTLA-4 were assessed by Griess method and ELISA, in peripheral blood mononuclear cells (PBMCs) of Algerian MetS patients and HC. MMPs activities were also determined ex-vivo, while iNOS expression was assessed by immunofluorescence staining. Results: Severe vitamin D deficiency was registered in Algerian MetS patients. The deficiency was found to be associated with an elevated in vivo NO production and high MMPs activity. Interestingly, α-25 (OH)2D3 declined the NO/iNOS system and IL-6 production, as well as MMPs activities. However, the ex-vivo production of IL-10, TGF-β increased in response to the treatment. We observed in the same way, the implication of s-CTLA-4 in MetS, which was markedly up-regulated with α-25 (OH)2D3. Conclusion: Our report indicated the relationship between MetS factors and Vitamin D deficiency. The ex-vivo findings emphasize its impact on maintaining regulated immune balance.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Olga Berillo ◽  
Kugeng Huo ◽  
Julio C Fraulob-Aquino ◽  
Chantal Richer ◽  
Na Li ◽  
...  

Background: Hypertension (HTN) is associated with subclinical target organ damage including cardiac, vascular and kidney injury. The immune system plays a role in hypertension and target organ damage. Activation of T cells has been reported among peripheral blood mononuclear cells (PBMCs) of patients with HTN. MicroRNAs (miRNAs) are crucial post-transcriptional regulators of immune cells. Whether miRNAs play a role in the activation of immune cells in hypertension complicated by target organ damage in humans remains unknown. We aimed to address this question by identifying differentially expressed (DE) miRNAs and their mRNA targets in PBMCs of patients with hypertension complicated or not with metabolic syndrome (MetS) or chronic kidney disease (CKD). Methods: Normotensive subjects and patients with hypertension (HTN) associated or not with at least 2 other features of MetS or CKD were studied (n=15-16). PBMCs were isolated from blood, RNA extracted for small and total RNA sequencing (RNA-seq) using Illumina HiSeq-2500 and data were analyzed using a systems biology approach. MiRDeep2 was used for novel miRNAs prediction, miRNA annotation and counting. TargetScan 7.07 was used to predict DE miRNA targets with weighted context score percentile >50%. DE genes miRNAs and mRNAs were identified with fold change (FC) >1.5 and P <0.005. DE miRNAs with FC>2 and mean read count number (MRCM) >500, and with predicted targets with MRCM>300 were validated by reverse transcription-quantitative PCR (RT-qPCR). Results: DE miRNAs, mRNAs and non-coding RNAs were identified in HTN (22, 19 and 0), MetS (57, 401 and 11) and CKD (6, 26 and 2) compared to NTN. TargetScan predicted that 7 miRNAs target 3 mRNAs in NTN, 57 miRNAs target 55 mRNAs in MetS and 3 miRNAs target 2 mRNAs in CKD. DE miR-409-5p (FC: 0.54±0.10 vs 1.00±0.09, P <0.05), miR-411-5p (FC: 0.40±0.06, vs 1.00±0.11, P <0.001) and the novel miR-pl-86 (FC: 1.96±0.17 vs 1.00±0.15, P <0.05) in MetS vs NTN were validated by RT-qPCR. RNA-seq data were correlated with RT-qPCR for miR-409-5p (R 2 =0.40, P <2.4E-07, n=55), miR-411-5p (R 2 =0.55, P <1.1E-10, n=55), miR-pl-86 (R 2 =0.37, P <5.5E-07, n=56). Conclusion: This study showed that DE miR-409-5p, miR-411-5p and miR-pl-86 may play a role in HTN associated with MetS.


Cholesterol ◽  
2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Zahra Tavoosi ◽  
Hemen Moradi-Sardareh ◽  
Massoud Saidijam ◽  
Reza Yadegarazari ◽  
Shiva Borzuei ◽  
...  

ABCA1 and ABCG1 genes encode the cholesterol transporter proteins that play a key role in cholesterol and phospholipids homeostasis. This study was aimed at evaluating and comparing ABCA1 and ABCG1 genes expression in metabolic syndrome patients and healthy individuals. This case-control study was performed on 36 patients with metabolic syndrome and the same number of healthy individuals in Hamadan (west of Iran) during 2013-2014. Total RNA was extracted from mononuclear cells and purified using RNeasy Mini Kit column. The expression of ABCA1 and ABCG1 genes was performed by qRT-PCR. Lipid profile and fasting blood glucose were measured using colorimetric procedures. ABCG1 expression in metabolic syndrome patients was significantly lower (about 75%) compared to that of control group, while for ABCA1 expression, there was no significant difference between the two studied groups. Comparison of other parameters such as HDL-C, FBS, BMI, waist circumference, and systolic and diastolic blood pressure between metabolic syndrome patients and healthy individuals showed significant differences (P<0.05). Decrease in ABCG1 expression in metabolic syndrome patients compared to healthy individuals suggests that hyperglycemia, related metabolites, and hyperlipidemia over the transporter capacity resulted in decreased expression of ABCG1. Absence of a significant change in ABCA1 gene expression between two groups can indicate a different regulation mechanism for ABCA1 expression.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Marlies P Noz ◽  
Siroon Bekkering ◽  
Laszlo Groh ◽  
Tim MJ Nielen ◽  
Evert JP Lamfers ◽  
...  

Atherosclerosis is the major cause of cardiovascular disease (CVD). Monocyte-derived macrophages are the most abundant immune cells in atherosclerotic plaques. In patients with atherosclerotic CVD, leukocytes have a hyperinflammatory phenotype. We hypothesize that immune cell reprogramming in these patients occurs at the level of myeloid progenitors. We included 13 patients with coronary artery disease due to severe atherosclerosis and 13 subjects without atherosclerosis in an exploratory study. Cytokine production capacity after ex vivo stimulation of peripheral blood mononuclear cells (MNCs) and bone marrow MNCs was higher in patients with atherosclerosis. In BM-MNCs this was associated with increased glycolysis and oxidative phosphorylation. The BM composition was skewed towards myelopoiesis and transcriptome analysis of HSC/GMP cell populations revealed enrichment of neutrophil- and monocyte-related pathways. These results show that in patients with atherosclerosis, activation of innate immune cells occurs at the level of myeloid progenitors, which adds exciting opportunities for novel treatment strategies.


2019 ◽  
Vol 87 (4) ◽  
Author(s):  
Phurpa Wangchuk ◽  
Catherine Shepherd ◽  
Constantin Constantinoiu ◽  
Rachael Y. M. Ryan ◽  
Konstantinos A. Kouremenos ◽  
...  

ABSTRACT Iatrogenic hookworm therapy shows promise for treating disorders that result from a dysregulated immune system, including inflammatory bowel disease (IBD). Using a murine model of trinitrobenzenesulfonic acid-induced colitis and human peripheral blood mononuclear cells, we demonstrated that low-molecular-weight metabolites derived from both somatic extracts (LMWM-SE) and excretory-secretory products (LMWM-ESP) of the hookworm, Ancylostoma caninum, display anti-inflammatory properties. Administration to mice of LMWM-ESP as well as sequentially extracted fractions of LMWM-SE using both methanol (SE-MeOH) and hexane-dichloromethane-acetonitrile (SE-HDA) resulted in significant protection against T cell-mediated immunopathology, clinical signs of colitis, and impaired histological colon architecture. To assess bioactivity in human cells, we stimulated primary human leukocytes with lipopolysaccharide in the presence of hookworm extracts and showed that SE-HDA suppressed ex vivo production of inflammatory cytokines. Gas chromatography-mass spectrometry (MS) and liquid chromatography-MS analyses revealed the presence of 46 polar metabolites, 22 fatty acids, and five short-chain fatty acids (SCFAs) in the LMWM-SE fraction and 29 polar metabolites, 13 fatty acids, and six SCFAs in the LMWM-ESP fraction. Several of these small metabolites, notably the SCFAs, have been previously reported to have anti-inflammatory properties in various disease settings, including IBD. This is the first report showing that hookworms secrete small molecules with both ex vivo and in vivo anti-inflammatory bioactivity, and this warrants further exploration as a novel approach to the development of anti-inflammatory drugs inspired by coevolution of gut-dwelling hookworms with their vertebrate hosts.


Nutrients ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 298 ◽  
Author(s):  
Sebastià Galmés ◽  
Margalida Cifre ◽  
Andreu Palou ◽  
Paula Oliver ◽  
Francisca Serra

Omega-3 rich diets have been shown to improve inflammatory status. However, in an ex vivo system of human blood cells, the efficacy of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) modulating lipid metabolism and cytokine response is attenuated in overweight subjects and shows high inter-individual variability. This suggests that obesity may be exerting a synergistic effect with genetic background disturbing the anti-inflammatory potential of omega-3 long-chain polyunsaturated fatty acids (PUFA). In the present work, a genetic score aiming to explore the risk associated to low grade inflammation and obesity (LGI-Ob) has been elaborated and assessed as a tool to contribute to discern population at risk for metabolic syndrome. Pro-inflammatory gene expression and cytokine production as a response to omega-3 were associated with LGI-Ob score; and lower anti-inflammatory effect of PUFA was observed in subjects with a high genetic score. Furthermore, overweight/obese individuals showed positive correlation of both plasma C-Reactive Protein and triglyceride/HDLc-index with LGI-Ob; and high LGI-Ob score was associated with greater hypertension (p = 0.047), Type 2 diabetes (p = 0.026), and metabolic risk (p = 0.021). The study shows that genetic variation can influence inflammation and omega-3 response, and that the LGI-Ob score could be a useful tool to classify subjects at inflammatory risk and more prone to suffer metabolic syndrome and associated metabolic disturbances.


Nutrients ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2932 ◽  
Author(s):  
Stine M. Ulven ◽  
Kirsten B. Holven ◽  
Amanda Rundblad ◽  
Mari C. W. Myhrstad ◽  
Lena Leder ◽  
...  

A healthy dietary pattern is associated with a lower risk of metabolic syndrome (MetS) and reduced inflammation. To explore this at the molecular level, we investigated the effect of a Nordic diet (ND) on changes in the gene expression profiles of inflammatory and lipid-related genes in peripheral blood mononuclear cells (PBMCs) of individuals with MetS. We hypothesized that the intake of an ND compared to a control diet (CD) would alter the expression of inflammatory genes and genes involved in lipid metabolism. The individuals with MetS underwent an 18/24-week randomized intervention to compare a ND with a CD. Eighty-eight participants (66% women) were included in this sub-study of the larger SYSDIET study. Fasting PBMCs were collected before and after the intervention and changes in gene expression levels were measured using TaqMan Array Micro Fluidic Cards. Forty-eight pre-determined inflammatory and lipid related gene transcripts were analyzed. The expression level of the gene tumor necrosis factor (TNF) receptor superfamily member 1A (TNFRSF1A) was down-regulated (p = 0.004), whereas the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) subunit, RELA proto-oncogene, was up-regulated (p = 0.016) in the ND group compared to the CD group. In conclusion, intake of an ND in individuals with the MetS may affect immune function.


Sign in / Sign up

Export Citation Format

Share Document