Research on performance optimization and fuel-saving mechanism of an Atkinson cycle gasoline engine at low speed and part load

Fuel ◽  
2020 ◽  
Vol 265 ◽  
pp. 117010 ◽  
Author(s):  
Qingyu Niu ◽  
Baigang Sun ◽  
Dongsheng Zhang ◽  
Qinghe Luo
Author(s):  
Qingyu Niu ◽  
Baigang Sun ◽  
Yue Wu ◽  
Lingzhi Bao ◽  
Qinghe Luo

A comprehensive analysis of the intake valve opening duration (IVOD) effects on the performance of an Atkinson cycle engine is conducted in this work using numerical simulation and experimental validation. Through one-dimensional simulation, the relationship between the range of IVOD and the compression ratios is firstly investigated under the constraint of compression pressure. Two representative IVOD, 295 and 314°CA, are then respectively applied to the performance simulation and experiment of a practical Atkinson cycle engine. The simulation shows the combination of a late intake valve opening timing (IVO) angle and a late exhaust valve opening timing (EVO) angle is profitable for improving the fuel economy under part load operating conditions (i.e. 2000 rpm@2 bar and 3000 rpm@3 bar). The experimental results present the Atkinson cycle engine under both IVOD scenarios considerably improves the brake specific fuel consumption (BSFC) and reduces the pumping mean effective pressure (PMEP) compared to those of the original Otto cycle engine. Meanwhile, the comparison between two IVOD scenarios show that the shorter IVOD leads to an improvement of indicated thermal efficiency, especially at lower load. Considering fuel economy, a shorter IVOD is more favorable at part load for the Atkinson cycle engine. Two main contributions of this work are to numerically quantify the IVOD range for the Atkinson cycle engine under part load, and to experimentally validate the effectiveness of simulation. The findings of this work are expected to support the design of Atkinson cycle engines and provide a guideline of IVOD optimization under part load.


Author(s):  
Myoungjin Kim ◽  
Sihun Lee ◽  
Wootae Kim

In-cylinder flows such as tumble and swirl have an important role on the engine combustion efficiencies and emission formations. In particular, the tumble flow, which is dominant in-cylinder flow in current high performance gasoline engines, has an important effect on the fuel consumptions and exhaust emissions under part load conditions. Therefore, it is important to know the effect of the tumble ratio on the part load performance and optimize the tumble ratio of a gasoline engine for better fuel economy and exhaust emissions. First step in optimizing a tumble flow is to measure a tumble ratio accurately. In this research the tumble flow was measured, compared and correlated using three different measurement methods: steady flow rig, 2-Dimensional PIV, and 3-Dimensional PTV. Engine dynamometer test was performed to find out the effect of the tumble ratio on the part load performance. Dynamometer test results of high tumble ratio engine showed faster combustion speed, retarded MBT timing, higher exhaust emissions, and a better lean burn combustion stability. Lean limit of the baseline engine was expanded from A/F=18:1 to A/F=21:1 by increasing a tumble ratio using MTV.


2021 ◽  
Vol 13 (12) ◽  
pp. 168781402110671
Author(s):  
Wei Duan ◽  
Zhaoming Huang ◽  
Hong Chen ◽  
Ping Tang ◽  
Li Wang ◽  
...  

Pre-chamber jet ignition is a promising way to improve fuel consumption of gasoline engine. A small volume passive pre-chamber was tested at a 1.5L turbocharged GDI engine. Combustion and emission characteristics of passive pre-chamber at low-speed WOT and part load were studied. Besides, the combustion stability of the passive pre-chamber at idle operation has also been studied. The results show that at 1500 r/min WOT, compared with the traditional spark ignition, the combustion phase of pre-chamber is advanced by 7.1°CA, the effective fuel consumption is reduced by 24 g/kW h, and the maximum pressure rise rate is increased by 0.09 MPa/°CA. The knock tendency can be relieved by pre-chamber ignition. At part load of 2000 r/min, pre-chamber ignition can enhance the combustion process and improve the combustion stability. The fuel consumption of pre-chamber ignition increases slightly at low load, but decreases significantly at high load. Compared with the traditional spark ignition, the NOx emissions of pre-chamber increase significantly, with a maximum increase of about 15%; the HC emissions decrease, and the highest decrease is about 36%. But there is no significant difference in CO emissions between pre-chamber ignition and spark plug ignition. The intake valve opening timing has a significant influence on the pre-chamber combustion stability at idle operation. With the delay of the pre-chamber intake valve opening timing, the CoV is reduced and can be kept within the CoV limit.


2015 ◽  
Vol 77 (8) ◽  
Author(s):  
S. F. Zainal Abidin ◽  
M. F. Muhamad Said ◽  
Z. Abdul Latiff ◽  
I. Zahari ◽  
M. Said

There are many technologies that being developed to increase the efficiency of internal combustion engines as well as reducing their fuel consumption.  In this paper, the main area of focus is on cylinder deactivation (CDA) technology. CDA is mostly being applied on multi cylinders engines. CDA has the advantage to improve fuel consumption by reducing pumping losses at part load engine conditions. Here, the application of CDA on 1.6L four cylinders gasoline engine is studied. One-dimensional (1D) engine modeling work is performed to investigate the effect of intake valve strategy on engine performance with CDA. 1D engine model is constructed based on the 1.6L actual engine geometries. The model is simulated at various engine speeds at full load conditions. The simulated results show that the constructed model is well correlated to measured data. This correlated model is then used to investigate the CDA application at part load conditions. Also, the effects on the in-cylinder combustion as well as pumping losses are presented. The study shows that the effect of intake valve strategy is very significant on engine performance. Pumping losses is found to be reduced, thus improve fuel consumption and engine efficiency.


2013 ◽  
Vol 273 ◽  
pp. 81-85
Author(s):  
Bing Guo Liu

Abstract: With the car into the family, for such a big developing country, how to effectively use and conserve resources, better adapt to the needs of the sustained, rapid and healthy development of the national economy, has become China’s key strategic issues. Currently, fuel-saving technologies in the use of vehicles have been a wide range of applications, and develop towards the trend of diversification.


2016 ◽  
Author(s):  
Renhua Feng ◽  
Yangtao Li ◽  
Jing Yang ◽  
Jianqin FU ◽  
Daming Zhang ◽  
...  

Author(s):  
Mavroudis D. Kavvalos ◽  
Konstantinos G. Kyprianidis

Abstract Compressor performance tests are mainly focused on the typical range of operation, resulting in limited knowledge of compressor behavior in the low-speed region. The main target of this work comprises the generation of compressor characteristics at low part-load by giving particular insight into the physical aspect of this operating condition. It is necessary for running transient and part-load performance simulation and can be considered as the first crucial step toward an optimal engine starting schedule. Modelling the low part-load operating regime requires accurate component performance maps extended to the low-speed area, where engine starting and altitude relight occur. In this work, a robust methodology for generating compressor maps in the low part-load operating regime is developed. Compressor geometry and typical operation range compressor map are required as inputs. Two different modelling processes are incorporated within this methodology. Extrapolation based on the principle of similarity laws with modified law exponents constitutes the first modelling process, which seems inaccurate when predicting compressor performance at fixed-rotor conditions. Interpolation based on the fixed-rotor characteristic constitutes the second modelling process, which can be either linear or adaptive. The adaptive interpolation scheme was developed by the authors and generates low-speed characteristics using the same allocation trend as the one obtained from given performance data. It is observed that performance data points of each β-line follow an exponential trend in mass flow differences while increasing rotational speed, with a calculated average relativized Root Mean Square (RMS) error of less than 5%. Adapting the same trend in mass flow to the low-speed region, a compressor performance map with continuous exponential trend in all characteristics (for part- and full-load conditions) can be achieved. Implementing the developed methodology on the High Pressure Compressor (HPC) of the Energy Efficient Engine (E3) project is also presented, showcasing its applicability and the merit of it being incorporated into any conventional performance prediction tool. Furthermore, a sensitivity analysis for input variables, namely compressor exit effective area and pressure loss model coefficients is carried out, demonstrating the significant impact of the former on the shape of the low part-load characteristics. Generation of compressor characteristics at low-speeds with this methodology can be viewed as an enabler for running credible transient starting simulation and transient diagnostics, thereby defining an optimal starting schedule, applicable to both power generation and aerospace industry.


Sign in / Sign up

Export Citation Format

Share Document