scholarly journals Leaf growth, gas exchange and assimilation performance of cowpea varieties in response to Bradyrhizobium inoculation

Heliyon ◽  
2022 ◽  
pp. e08746
Author(s):  
Tewodros Ayalew ◽  
Tarekegn Yoseph ◽  
Petra Högy ◽  
Georg Cadisch
Biologia ◽  
2010 ◽  
Vol 65 (5) ◽  
Author(s):  
Renata Bączek-Kwinta ◽  
Agnieszka Adamska ◽  
Katarzyna Seidler-Łożykowska ◽  
Krzysztof Tokarz

AbstractThe response of the wild type (WT) and a strain C6/2 of German chamomile to 7-d soil drought and subsequent 7-day rehydration was studied. Shoot and leaf growth, vegetative development, water and protein contents, ascorbate peroxidase activity and gas exchange were compared. At the stress stage, water content of WT plants was slightly influenced and the effect was ceased after rehydration. Also the decrease in gas exchange was temporary. New leaves were formed, although their area was diminished. On the contrary, leaves of C6/2 plants were more desiccated and the durable decrease in water content was accompanied by the impairment in gas exchange also at the recovery stage (20–40% loss when compared to the control). At both stages of the experiment the growth of the long shoots of this genotype was drastically decreased, as well as leaf formation. Ascorbate peroxidase activity was increased by drought in leaves of both genotypes, but the pattern of changes in WT plants reflected the enhancement of metabolism resulting from proper water content and gas exchange at the recovery stage. Different pattern of changes in the protein content during drought was also noticed: a slight increase in WT, while the decrease by ¼ in C6/2 leaves. The response of WT plants to desiccation and rewatering was found to be more elastic than that of C6/2.


1999 ◽  
Vol 5 (3) ◽  
pp. 283-291 ◽  
Author(s):  
Rachid Serraj ◽  
L. Hartwell Allen ◽  
Thomas R. Sinclair

1975 ◽  
Vol 53 (5) ◽  
pp. 466-474 ◽  
Author(s):  
H. S. Srivastava ◽  
P. A. Jolliffe ◽  
V. C. Runeckles

An open gas-flow system was used to examine the effects of the air pollutant NO2 on gas exchange by primary leaves of bean (Phaseolus vulgaris L.). Apparent photosynthesis and dark respiration were both inhibited by NO2 concentrations between 1.0 and 7.0 ppm. The degree of inhibition was increased by increasing NO2 concentration and increasing exposure time. Leaf susceptibility to NO2 varied during leaf growth. NO2 was most inhibitory at the ages when maximum rates of apparent photosynthesis or respiration were observed in the NO2-free controls (11 or 12, or 8 days after sowing, respectively). The rate of absorption of NO2 by leaves increased in direct proportion with the NO2 concentration and declined with increasing exposure time. The NO2 uptake rate in the dark was about half of its rate during illumination because of greater stomatal resistance to NO2 absorption in the dark. Transpiration rate was less affected by NO2 than was photosynthesis or respiration. Accordingly, it is suggested that the principal effects of NO2 on leaf gas exchange are exerted in the leaf mesophyll and are not on the stomata.


1974 ◽  
Vol 1 (2) ◽  
pp. 271 ◽  
Author(s):  
C Hackett ◽  
HM Rawson

As a sequel to calculations made in Part I about the carbon economy of the tobacco plant, a short-day variety of tobacco (Nicotiana tabacum L. cv. Mammoth 17L) was grown at controlled temperatures in two contrasting photoperiods (13 and 9 h) and the growth and gas exchange of the plants were determined as frequently as possible during the period 30–100 days from sowing. This paper describes aspects of the leaf emergence, leaf expansion, floral development, and dry matter partitioning in these plants. Part III will present the gas-exchange data. The most striking finding from the growth data concerned leaf expansion. The application of curve-fitting techniques showed that the expansion of each leaf studied could be accurately described by the Gompertz growth function, which implied that the maximum absolute rate of expansion had been achieved quite early in the leaf's development, at about 37% of full expansion. Furthermore, in all but the juvenile leaves, the time-spread of expansion was similar, despite up to 10-fold differences in the final area of the leaves due to photoperiod and position on the stem. Other relationships observed in the data seemed of fundamental interest. Attention is drawn (1) to the smooth progression in final leaf size with progress up the stem, and (2) to the changes with time in the ratio of the relative growth rates of the major plant parts, but whether these relationships, and those between leaf expansion and time, are typical of tobacco will remain uncertain until comparable studies are performed. * Part I, Aust. J. Biol. Sci., 1973, 26, 1057–71.


2016 ◽  
Vol 28 (2) ◽  
pp. 185-190
Author(s):  
Daniela Siqueira Coelho ◽  
José Aliçandro Bezerra da Silva ◽  
Russaika Lírio Nascimento ◽  
Vanessa de Souza Oliveira ◽  
Juliano Juliano

Sign in / Sign up

Export Citation Format

Share Document