Heat transfer in micro-channels: Comparison of experiments with theory and numerical results

2005 ◽  
Vol 48 (25-26) ◽  
pp. 5580-5601 ◽  
Author(s):  
G. Hetsroni ◽  
A. Mosyak ◽  
E. Pogrebnyak ◽  
L.P. Yarin
Author(s):  
Ann Lee ◽  
Victoria Timchenko ◽  
Guan H. Yeoh ◽  
John A. Reizes

An in-house computer code is developed and applied to investigate the effect of a synthetic jet on heat transfer rates in forced convection of water in silicon micro-channels etched in the rear side of the silicon substrate. To account for the deflection of the membrane located at the bottom of the actuator cavity, a moving mesh technique to solve the flow and heat transfer is purposefully adopted. The governing equations are transformed into the curvilinear coordinate system in which the grid velocities evaluated are then fed into the computation of the flow in the cavity domain thus allowing the conservation equations of mass, momentum and energy to be solved within the stationary computational domain. The fully three-dimensional model considers the SIMPLE method to link the pressure and velocity. A heat flux of 1 MW/m2 is applied at the surface of the top of the silicon wafer and the resulting complex, conjugate heat transfer through the silicon substrate is included. The hydrodynamics feature of the flow is validated against existing experimental results and verified against numerical results from commercial package ANSYS CFX 11.0. Good agreement has been achieved. To track the development of the flow and heat transfer when the actuator is switched on, numerical results of 20 full cycles of the actuator are simulated. When the actuator is switched on, noticeable temperature drop is observed at all points in the substrate from those which existed when there has been a steady water flow in the channel. At the end of 20th cycle of actuation, the maximum temperature in the wafer has reduced by 5.4 K in comparison with the steady flow values. In comparison with the two-dimensional study which account for 17K reduction, it indicates that synthetic jet has only smaller beneficial cooling and has been over-estimated in the previous two-dimensional study.


Author(s):  
Emrah Deniz ◽  
I. Yalcin Uralcan

Mini and microchannel applications have become an important and attractive research area during the past decades. For micro systems design purposes, numerical and experimental studies have been conducted on flow and heat transfer characteristics of mini and microchannels and various friction factor and Nusselt number correlations have been proposed. Some researchers have tried to apply conventional tube correlations to mini and micro channels, rather than deriving new correlations. In this study, using commercial CFD software, flow and heat transfer characteristics in laminar and turbulent flow through circular channels are analyzed numerically. The applicability of conventional correlations in calculating the friction factor and Nusselt number is investigated. It is concluded that, in laminar regime conventional correlations can be used to calculate the friction factor for the channel sizes considered. In turbulent regime, however, numerical results for friction factor yielded greater values than those calculated by the conventional correlations. Numerical Nusselt numbers are found to be closer to the conventional values in laminar and turbulent regimes. In turbulent regime, on the other hand, Nusselt number values calculated with the microchannel correlations are determined to be greater than the numerical results and the values calculated with the conventional correlations.


Author(s):  
HoKi Lee ◽  
C. D. Richards ◽  
R. F. Richards

Experimental and numerical results are presented for steady evaporating flow heat transfer from open top square micro-channels. Radial channels, 40 microns high, and 35, 50 and 70 microns wide with 5 micron wide SU-8 walls are considered. The channels are filled with Fluorinert FC77 working fluid pumped by capillary forces from a reservoir at the outer circumference of the radial channels. An energy balance on the radial channels including heat into the channels, conduction heat transfer radially along the channels and latent heat transfer via evaporation of the working fluid from the channels is experimentally determined. Microphotography is used to visualize the working fluid and the meniscus contact angles in the channels. A three-dimensional finite difference time-domain integration is used to predict sensible heat transfer rates and latent heat transfer/ evaporation rates. Experimental measurements are compared to the numerical results to extract estimates of the liquid thickness in the channels.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Swanand Gaikwad ◽  
Ashish Parmar

AbstractHeat exchangers possess a significant role in energy transmission and energy generation in most industries. In this work, a three-dimensional simulation has been carried out of a shell and tube heat exchanger (STHX) consisting of segmental baffles. The investigation involves using the commercial code of ANSYS CFX, which incorporates the modeling, meshing, and usage of the Finite Element Method to yield numerical results. Much work is available in the literature regarding the effect of baffle cut and baffle spacing as two different entities, but some uncertainty pertains when we discuss the combination of these two parameters. This study aims to find an appropriate mix of baffle cut and baffle spacing for the efficient functioning of a shell and tube heat exchanger. Two parameters are tested: the baffle cuts at 30, 35, 40% of the shell-inside diameter, and the baffle spacing’s to fit 6,8,10 baffles within the heat exchanger. The numerical results showed the role of the studied parameters on the shell side heat transfer coefficient and the pressure drop in the shell and tube heat exchanger. The investigation shows an increase in the shell side heat transfer coefficient of 13.13% when going from 6 to 8 baffle configuration and a 23.10% acclivity for the change of six baffles to 10, for a specific baffle cut. Evidence also shows a rise in the pressure drop with an increase in the baffle spacing from the ranges of 44–46.79%, which can be controlled by managing the baffle cut provided.


Computation ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 65
Author(s):  
Aditya Dewanto Hartono ◽  
Kyuro Sasaki ◽  
Yuichi Sugai ◽  
Ronald Nguele

The present work highlights the capacity of disparate lattice Boltzmann strategies in simulating natural convection and heat transfer phenomena during the unsteady period of the flow. Within the framework of Bhatnagar-Gross-Krook collision operator, diverse lattice Boltzmann schemes emerged from two different embodiments of discrete Boltzmann expression and three distinct forcing models. Subsequently, computational performance of disparate lattice Boltzmann strategies was tested upon two different thermo-hydrodynamics configurations, namely the natural convection in a differentially-heated cavity and the Rayleigh-Bènard convection. For the purposes of exhibition and validation, the steady-state conditions of both physical systems were compared with the established numerical results from the classical computational techniques. Excellent agreements were observed for both thermo-hydrodynamics cases. Numerical results of both physical systems demonstrate the existence of considerable discrepancy in the computational characteristics of different lattice Boltzmann strategies during the unsteady period of the simulation. The corresponding disparity diminished gradually as the simulation proceeded towards a steady-state condition, where the computational profiles became almost equivalent. Variation in the discrete lattice Boltzmann expressions was identified as the primary factor that engenders the prevailed heterogeneity in the computational behaviour. Meanwhile, the contribution of distinct forcing models to the emergence of such diversity was found to be inconsequential. The findings of the present study contribute to the ventures to alleviate contemporary issues regarding proper selection of lattice Boltzmann schemes in modelling fluid flow and heat transfer phenomena.


2021 ◽  
pp. 875608792110260
Author(s):  
ME Ismail ◽  
MM Awad ◽  
AM Hamed ◽  
MY Abdelaal ◽  
EB Zeidan

This study experimentally and numerically investigates a typical HDPE blown film production process cooled via a single-lip air-ring. The processing observations are considered for the proposed subsequent modifications on the air-ring design and the location relative to the die to generate a radial jet, directly impinging on the bubble. Measurements are performed to collect the actual operating parameters to set up the numerical simulations. The radiation heat transfer and the polymer phase change are considered in the numerical simulations. The velocity profile at the air-ring upper-lip is measured via a five-hole Pitot tube to compare with the numerical results. The comparison between the measurements and the numerical results showed that the simulations with the STD [Formula: see text] turbulence model are more accurate with a minimum relative absolute error (RAE) of 1.6%. The numerical results indicate that the peak Heat Transfer Coefficient (HTC) at the impingement point for the modified design with radial jet and longer upper-lip is 29.1% higher than the original design at the same conditions. Besides, increasing the air-ring upper-lip height increased the averaged HTC, which is 13.4% higher than the original design.


Author(s):  
Qingming Liu ◽  
Björn Palm ◽  
Henryk Anglart

3D simulations on confined bubbles in micro-channels with diameter of 1.24 mm were conducted. The working fluid is R134a with a mass flux range from 125kg/m2s to 375kg/m2s. The VOF model is chosen to capture the 2 phase interface while the geo-construction method was used to re-construct the 2-phase interface. A heated boundary wall with heat flux varying from 15kW/m2 to 102kW/m2 is supplied. The wall temperature was calculated. The effects of mass flux and heat flux are studied. The shape of the bubble was predicted by the simulation successfully and the results show that they are independent of the initial shape. Both thin film evaporation and micro convection enhance the heat transfer. However, the micro convection which is caused by bubble motion has greater contribution to the total heat transfer at the stage of bubble growth studied.


Sign in / Sign up

Export Citation Format

Share Document