Modelling for the in-plane plateau stress of honeycomb paperboard based on the induce effect of face paper with honeycomb core

2020 ◽  
Vol 168 ◽  
pp. 105289 ◽  
Author(s):  
Xiaojie Gu ◽  
Jun Wang ◽  
Guoxing Lu ◽  
Liao Pan ◽  
Lixin Lu
Author(s):  
Antao Deng ◽  
Bin Ji ◽  
Xiang Zhou

A new geometric design method for foldcores based on the generalized Resch patterns that allow face-to-face bonding interfaces between the core and the skins is proposed. Based on the geometric design method, a systematic numerical investigation on the quasi-static mechanical properties of the generalized Resch-based foldcores made of carbon fiber-reinforced plastic (CFRP) woven fabrics subjected to compression and shear loads is performed using the finite element method that is validated by experiments. The relationships between the mechanical properties and various geometric parameters as well as laminate thickness of the generalized Resch-based CFRP foldcores are revealed. Additionally, the mechanical properties of the generalized Resch-based CFRP foldcore are compared to those of the standard Resch-based, Miura-based foldcore, the honeycomb core, and the aluminum counterpart. It is found that the generalized Resch-based CFRP foldcore performs more stably than the honeycomb core under compression and has higher compressive and shear stiffnesses than the standard Resch-based and Miura-based foldcores and absorbs as nearly twice energy under compression as the Miura-based foldcore does. When compared with the aluminum counterpart, the CFRP model has higher weight-specific stiffness and strength but lower energy absorption capacity under shearing. The results presented in this paper can serve as the useful guideline for the design of the generalized Resch-based composite foldcore sandwich structures for various performance goals.


2016 ◽  
Vol 835 ◽  
pp. 649-653
Author(s):  
Yuan Yuan Ding ◽  
Shi Long Wang ◽  
Zhi Jun Zheng ◽  
Li Ming Yang ◽  
Ji Lin Yu

A 3D cell-based finite element model is employed to investigate the dynamic biaxial behavior of cellular materials under combined shear-compression. The biaxial behavior is characterized by the normal stress and shear stress, which could be determined directly from the finite element results. A crush plateau stress is introduced to illustrate the critical crush stress, and the result shows that the normal plateau stress declines with the increase of the shear plateau stress, which climbs with the increase of loading angle. An elliptical criterion of normal plateau stress vs. shear plateau stress is obtained by the nonlinear regression method.


2013 ◽  
Vol 486 ◽  
pp. 283-288
Author(s):  
Ladislav Fojtl ◽  
Soňa Rusnáková ◽  
Milan Žaludek

This research paper deals with an investigation of the influence of honeycomb core compression on the mechanical properties of sandwich structures. These structures consist of prepreg facing layers and two different material types of honeycomb and are produced by modified compression molding called Crush-Core technology. Produced structures are mechanically tested in three-point bending test and subjected to low-velocity impact and Charpy impact test.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
B. Saraswathy ◽  
R. Ramesh Kumar ◽  
Lalu Mangal

Analytical formulation for the evaluation of frequency of CFRP sandwich beam with debond, following the split beam theory, generally underestimates the stiffness, as the contact between the honeycomb core and the skin during vibration is not considered in the region of debond. The validation of the present analytical solution for multiple-debond size is established through 3D finite element analysis, wherein geometry of honeycomb core is modeled as it is, with contact element introduced in the debond region. Nonlinear transient analysis is followed by fast Fourier transform analysis to obtain the frequency response functions. Frequencies are obtained for two types of model having single debond and double debond, at different spacing between them, with debond size up to 40% of beam length. The analytical solution is validated for a debond length of 15% of the beam length, and with the presence of two debonds of same size, the reduction in frequency with respect to that of an intact beam is the same as that of a single-debond case, when the debonds are well separated by three times the size of debond. It is also observed that a single long debond can result in significant reduction in the frequencies of the beam than multiple debond of comparable length.


2015 ◽  
Vol 67 (1) ◽  
pp. 7-12
Author(s):  
Cosmin Mihai Miriţoiu

Abstract In this paper there is presented an experimental procedure used to determine the flexural rigidity for composite sandwich bars with polypropylene honeycomb core with various thickness values: 1, 1,5 and 2 cm. The composite bars will be reinforced with one layer of carbon fiber. The width value of the composite bars will be of 6 cm. In order to obtain the flexural rigidity the composite bars will be clamped at one end and left free at the other. An accelerometer will be placed at the free end used to record the free vibrations of these bars. The simplifying assumption of “bar” will be used in this research, so I have chosen several free lengths for the bars: 29, 32 and 35 cm. The eigenfrequency of the first eigenmode will be used to determine the flexural rigidity of the bars.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 12
Author(s):  
Łukasz Święch ◽  
Radosław Kołodziejczyk ◽  
Natalia Stącel

The work concerns the experimental analysis of the process of destruction of sandwich structures as a result of circumferential shearing. The aim of the research was to determine the differences that occur in the destruction mechanism of such structures depending on the thickness and material of the core used. Specimens with a Rohacell foam core and a honeycomb core were made for the purposes of the research. The specimen destruction process was carried out in a static loading test with the use of a system introducing circumferential shear stress. The analysis of the tests results was made based on the load-displacement curves, the maximum load, and the energy absorbed by individual specimens. The tests indicated significant differences in the destruction mechanism of specimens with varied core material. The specimen with the honeycomb core was characterized by greater stiffness, which caused the damage to occur locally in the area subjected to the pressure of the punch. In specimens with the foam core, due to the lower stiffness of that core, the skins of the structure were bent, which additionally transfers compressive and tensile loads. This led to a higher maximum force that the specimens obtained at the time of destruction and greater energy absorption.


2001 ◽  
Author(s):  
Uday K. Vaidya ◽  
Biju Mathew ◽  
Chad A. Ulven ◽  
Brent Sinn ◽  
Marian Velazquez

Abstract Sandwich composites find increasing use as flexural load bearing lightweight sub-elements rail / ground transportation and marine bodies. In recent year, alternatives to traditional foam and honeycomb cores are being sought. One such development includes filling the cells of the honeycomb core with foam. The increased surface area allows stress forces to dissipate over a larger area than that offered by the honeycomb alone. This allows for use of lowering the cost of the honeycomb cells, and thereby making the design extremely cost-effective. In the present research, phenolic impregnated honeycomb / corrugated cells with polyurethane foam filling has been considered. The intermediate and high velocity impact response of these types of sandwich constructions has been studied. The applications for such cores would be in rail and ground transportation, where impacts in the form of flying debris are common.


Sign in / Sign up

Export Citation Format

Share Document