Back to the Future: Charting the Direction of Lower Grade Glioma Trials With Lessons From the Present and Past

2022 ◽  
Vol 112 (1) ◽  
pp. 30-34
Author(s):  
Michelle M. Kim ◽  
Jona A. Hattangadi-Gluth ◽  
Kristin J. Redmond ◽  
Daniel M. Trifiletti ◽  
Scott G. Soltys ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Haiwei Wang ◽  
Xinrui Wang ◽  
Liangpu Xu ◽  
Ji Zhang ◽  
Hua Cao

AbstractBased on isocitrate dehydrogenase (IDH) alterations, lower grade glioma (LGG) is divided into IDH mutant and wild type subgroups. However, the further classification of IDH wild type LGG was unclear. Here, IDH wild type LGG patients in The Cancer Genome Atlas and Chinese Glioma Genome Atlas were divided into two sub-clusters using non-negative matrix factorization. IDH wild type LGG patients in sub-cluster2 had prolonged overall survival and low frequency of CDKN2A alterations and low immune infiltrations. Differentially expressed genes in sub-cluster1 were positively correlated with RUNX1 transcription factor. Moreover, IDH wild type LGG patients with higher stromal score or immune score were positively correlated with RUNX1 transcription factor. RUNX1 and its target gene REXO2 were up-regulated in sub-cluster1 and associated with the worse prognosis of IDH wild type LGG. RUNX1 and REXO2 were associated with the higher immune infiltrations. Furthermore, RUNX1 and REXO2 were correlated with the worse prognosis of LGG or glioma. IDH wild type LGG in sub-cluster2 was hyper-methylated. REXO2 hyper-methylation was associated with the favorable prognosis of LGG or glioma. At last, we showed that, age, tumor grade and REXO2 expression were independent prognostic factors in IDH wild type LGG.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi206-vi206
Author(s):  
Audra Boscoe ◽  
Ted Wells ◽  
Christina Graham ◽  
Caitlin Pohl ◽  
Brooke Witherspoon ◽  
...  

Abstract BACKGROUND Patients with lower grade glioma (LGG) (i.e., grade II or III) have limited treatment options. After surgical resection of their tumor, patients will undergo either a period of expectant management (watch and wait) or treatment with adjuvant chemotherapy and/or radiotherapy. Approximately 80% of patients with LGG have an isocitrate dehydrogenase mutation, which is a viable target for molecular therapy. This offers a therapeutic intervention that could potentially delay the need for chemotherapy and/or radiotherapy in select patients. Several prognostic and patient-specific factors contribute to the decision to recommend expectant management, including concerns about the side effects of chemotherapy and radiotherapy. The aim of this project was to understand patients’ signs and symptoms during the expectant management period and how LGG impacts their lives. METHODS Concept elicitation interviews were conducted in the US with patients with LGG as well as key opinion leaders (KOLs) with experience treating patients with LGG. Interview data were analyzed using Atlas.ti, and patient data were reviewed against KOL data. RESULTS Seven patients with ≥ 3 months of expectant management experience and three KOLs were interviewed. During their expectant management periods, patients reported 12 signs/symptoms, mostly related to deficits in cognition. Patients reported 16 impacts across four categories, with a substantial proportion of the impacts identified as negatively affecting emotional function. The signs/symptoms and impacts reported by patients were generally also reported by KOLs. During expectant management, patients typically resume their original quality of life post-surgery, but may also experience anxiety. Patients and KOLs indicated a preference for expectant management and delaying chemotherapy or radiotherapy. CONCLUSIONS Patient and KOL interviews characterized the LGG experience and indicated a preference for expectant management, which may be supported by therapies that delay the initiation of chemotherapy and/or radiotherapy.


Neurosurgery ◽  
2021 ◽  
Author(s):  
Peng Wang ◽  
Chen Luo ◽  
Peng-jie Hong ◽  
Wen-ting Rui ◽  
Shuai Wu

Abstract BACKGROUND While maximizing extent of resection (EOR) is associated with longer survival in lower-grade glioma (LGG) patients, the number of cases remains insufficient in determining a EOR threshold to elucidate the clinical benefits, especially in IDH-wild-type LGG patients. OBJECTIVE To identify the effects of EOR on the survival outcomes of IDH-wild-type LGG patients. METHODS IDH-wild-type LGG patients were retrospectively reviewed. The effect of EOR and other predictor variables on overall survival (OS) and progression-free survival (PFS) was analyzed using Cox regression models and the Kaplan-Meier method. RESULTS A total of 94 patients (median OS: 48.9 mo; median follow-up: 30.6 mo) were included in this study. In the multivariable Cox regression analysis, postoperative residual volume was associated with prolonged OS (HR = 2.238; 95% confidence interval [CI], 1.130-4.435; P = .021) and PFS (HR = 2.075; 95% CI, 1.113-3.869; P = .022). Thresholds at a minimum EOR of 97.0% or a maximum residue of 3.0 cm3 were necessary to impact OS positively. For the telomerase reverse transcriptase (TERT)p-wild-type group, such an association was absent. Significant differences in survival existed between the TERTp-wild-type and mutant patients who underwent relatively incomplete resections (residual ≥2.0 cm3 + TERTp wild type: median OS of 62.6 mo [95% CI: 39.7-85.5 mo]; residual ≥2.0 cm3 + TERTp mutant: median OS of 20.0 mo [95% CI:14.6-25.4 mo]). CONCLUSION Our results support the core role of maximal safe resection in the treatment of IDH-wild-type LGGs, especially for IDH-wild-type + TERTp-mutant LGGs. Importantly, the survival benefits of surgery could only be elucidated at a high EOR cut-off point.


2021 ◽  
Author(s):  
Di Cao ◽  
Jun Wang ◽  
Yan Lin ◽  
Guangwei Li

Abstract Background: The therapeutic efficacy of immune checkpoint inhibitor therapy is highly influenced by tumor mutation burden (TMB). The relationship between TMB and prognosis in lower-grade glioma is still unclear. We aimed to explore the relationships and mechanisms between them in lower-grade glioma.Methods: We leveraged somatic mutation data from The Cancer Genome Atlas (TCGA). Clinical cases were divided into high- and low-TMB groups based on the median of TMB. Infiltrating immune cells were analyzed using CIBERSORT and differential expression analysis between the prognostic groups performed. The key genes were identified as intersecting between immune-related genes. Cox regression and survival analysis were performed on the intersecting genes. A total of 7 hub genes were identified. The effect of somatic copy number alterations (SCNA) of the hub genes on immune cell infiltration was analyzed using TIMER, which was used to determine the risk factors and immune infiltration status in LGG. Subsequently, based on hub genes, a TMB Prognosis Index (TMBPI) model was constructed to predict the risk in LGG patients. Besides, this model was validated using data from TCGA and Chinese Glioma Genome Atlas (CGGA).Results: High-TMB favored worse prognosis (P<0.001) and macrophage infiltration was an independent risk factor (P<0.001). In the high-TMB group (P=0.033, P=0.009), the proportion of macrophages M0 and M2 increased and monocytes decreased (P=0.006). Besides, the SCNA of the hub genes affected the level of immune cell infiltration by varying degrees among which IGF2BP3, NPNT, and PLA2G2A had a significant impact. The AUC of the ROC curve at 1-, 3- and 5-years were all above 0.74.Conclusions: This study implies that high-TMB correlated with unfavorable prognosis in lower-grade glioma. And high-TMB may have an impact on prognosis by changing tumor microenvironment, caused by the SCNAs of genes. The TMBPI model accurately predicted prognosis in LGG patients.


2020 ◽  
Vol 78 (1) ◽  
pp. 34-38
Author(s):  
Burcu BITERGE-SUT

Abstract Brain tumors are one of the most common causes of cancer-related deaths around the world. Angiogenesis is critical in high-grade malignant gliomas, such as glioblastoma multiforme. Objective: The aim of this study is to comparatively analyze the angiogenesis-related genes, namely VEGFA, VEGFB, KDR, CXCL8, CXCR1 and CXCR2 in LGG vs. GBM to identify molecular distinctions using datasets available on The Cancer Genome Atlas (TCGA). Methods: DNA sequencing and mRNA expression data for 514 brain lower grade glioma (LGG) and 592 glioblastoma multiforme (GBM) patients were acquired from The Cancer Genome Atlas (TCGA), and the genetic alterations and expression levels of the selected genes were analyzed. Results: We identified six distinct KDR mutations in the LGG patients and 18 distinct KDR mutations in the GBM patients, including missense and nonsense mutations, frame shift deletion and altered splice region. Furthermore, VEGFA and CXCL8 were significantly overexpressed within GBM patients. Conclusions: VEGFA and CXCL8 are important factors for angiogenesis, which are suggested to have significant roles during tumorigenesis. Our results provide further evidence that VEGFA and CXCL8 could induce angiogenesis and promote LGG to progress into GBM. These findings could be useful in developing novel targeted therapeutics approaches in the future.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii31-ii32
Author(s):  
Joydeep Mukherjee ◽  
Yongjian Tang ◽  
Tor-Christian Johanessen ◽  
Ajay Pandita ◽  
Shigeo Ohba ◽  
...  

Abstract Approximately 10% of tumors including all IDH1-mutant lower-grade glioma resolve telomeric shortening using Alternative Lengthening of Telomere (ALT) mechanism. Although the ALT process lengthens telomeres, it also generates small bits of extrachromosomal, telomere-containing DNA (ECTRs). These ECTRs can bind and activate cyclic GMP-AMP synthase (cGAS), the major cytosolic sensor of double-stranded DNA, which in turn can activate expression of stimulator of IFN genes (STING) and the interferon-based innate immune response. To limit the immune response, ALT cells inactivate the cGAS-STING pathway, although the mechanism by which this occurs is unknown. Here we show that the deubiquitinase BRCC3 links ALT telomeres to suppression of the cGAS-STING pathway and the innate immune response. Astrocytoma cells dependent on the ALT-mechanism (IDH1-mutant and ATRX-deficient genetically-modified human astrocytes and MGG119 PDX) contained ECTR and had reduced expression of the cGAS and the downstream components of the cGAS-STING pathway (STING, and IFN-β) relative to matched non-ALT (isogenic ATRX WT astrocytes and MGG152 PDX) cells lacking ECTRs. Decreased levels of cGAS in ALT cells were in turn associated with deubiquitiantion and destabilization of cGAS. The telomere-derived ECTR in ALT-dependent cells lacked two proteins normally found in ALT telomeres (TRF2 or PARP), but retained two other proteins, Mre11 and its binding partner, normally nuclear deubiquitinase BRCC3. Furthermore, either pharmacologic inhibition or genetic suppression of BRCC3 levels had no effect on ECTR levels but stabilized cGAS and activated the cGAS-STING pathway. This cGAS-mediated activation could be blocked by exogenous expression of WT BRCC3, but not by expression of a mutant BRCC3 incapable of deubiquitination. These results show that BRCC3 translocated along with ECTRs to the cytoplasm degrades cGAS and protects ALT-dependent cells from activating the innate immune response. The BRCC3-controlled cGAS-STING pathway may therefore represent a therapeutically targetable means to enhance the immune response in IDH1-mutant lower grade glioma.


2020 ◽  
Author(s):  
Siyuan Jiang ◽  
Lizhe Zhu ◽  
Chao Jiang ◽  
Shibo Yu ◽  
Bin Wang ◽  
...  

Abstract Background Synaptotagmins (SYTs) are a family of proteins whose primary function is serving as a calcium sensor in vesicle transport and exocytosis, playing an important role in the function of immune cells. There is also a close relationship between immune cells and tumours. SYT4 is one molecule involved in this relationship, but the relationship between SYT4 and cancer remains unclear. Therefore, we hypothesize that SYT4 can affect the prognosis of cancer, and may be related to immune cells. Methods The following databases were used to study the immunological and prognostic role of SYT4 in cancers: Oncomine, Kaplan-Meier plotter, The Human Protein Atlas, CCLE, GEPIA2, TIMER, and CGGA. Results SYT4 expressions were lower in many cancers than in normal tissues. Specifically in gastric cancer and lower-grade gliomas, SYT4 played a protective and harmful role, respectively. Moreover, a difference between SYT4 expression and the levels of immune infiltration existed in stomach adenocarcinoma (STAD) and brain lower-grade glioma (LGG). In addition, we found that the relationship between markers of monocytes, M1 and M2 macrophages, tumour-associated macrophages (TAMs), Treg cells, B lymphocytes, dendritic cells (DCs) and SYT4 expression was opposite in STAD and LGG. Conclusions The effect of SYT4 on the prognosis of patients with STAD and LGG was opposite. And SYT4 has different effects on immune infiltration in these two tumours. Therefore, SYT4 might be a potential prognostic and tumour immune-related biomarker in STAD and LGG.


Sign in / Sign up

Export Citation Format

Share Document