scholarly journals Refinement of the selection of physicochemical properties for grouping and read-across of nanoforms

NanoImpact ◽  
2021 ◽  
pp. 100375
Author(s):  
Frédéric Loosli ◽  
Kirsten Rasmussen ◽  
Hubert Rauscher ◽  
Richard K. Cross ◽  
Nathan Bossa ◽  
...  
2019 ◽  
Vol 10 (45) ◽  
pp. 6091-6108 ◽  
Author(s):  
Johan M. Winne ◽  
Ludwik Leibler ◽  
Filip E. Du Prez

A selection of dynamic chemistries is highlighted, with a focus on the reaction mechanisms of molecular network rearrangements, and on how mechanistic profiles can be related to the mechanical and physicochemical properties of polymer materials.


2021 ◽  
Vol 2 (1) ◽  
pp. 14-25
Author(s):  
Musliana Mustaffa

The use of bioceramic root canal sealers in endodontics is a promising approach because of the advantages such as improved flow properties, biocompatible and could promote the formation of hard tissue. Due to the recent technology and limited scientific evidence, the effectiveness of bioceramic root canal sealers remains unclear. This article focuses on the physicochemical properties, biocompatibility, biomineralisation, retreatability, 3D obturation and current practice of using bioceramic root canal sealers. The relevant articles for this review were searched manually from Google Scholar and PubMed using keywords ‘bioceramic root filling material AND endodontics’, ‘bioceramic root canal sealers AND endodontics’, ‘cytotoxicity AND bioceramic root canal sealers’, ‘bioceramic root canal sealers AND physicochemical properties’, ‘biomineralisation AND bioceramic root canal sealers’ and ‘retreatment efficacy AND bioceramic root filling materials’. Since the clinical data concerning the obturation with bioceramic root canal sealers is lacking, the selection of materials should be made based on the available scientific evidence, individual cases, material availability and operator’s preference.


1974 ◽  
Vol 52 (1) ◽  
pp. 87-92 ◽  
Author(s):  
R. CRANFIELD ◽  
P.J. GOODFORD ◽  
F.E. NORRINGTON ◽  
W.H.G. RICHARDS ◽  
G.C. SHEPPEY ◽  
...  

2010 ◽  
Vol 51 (1) ◽  
pp. 148-158 ◽  
Author(s):  
Taiji Oashi ◽  
Ashley L. Ringer ◽  
E. Prabhu Raman ◽  
Alexander D. MacKerell

Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 175
Author(s):  
Anna Onopiuk ◽  
Klaudia Kołodziejczak ◽  
Monika Marcinkowska-Lesiak ◽  
Iwona Wojtasik-Kalinowska ◽  
Arkadiusz Szpicer ◽  
...  

Marinating is one of the most common methods of pre-processing meat. Appropriate selection of marinade ingredients can influence the physicochemical properties of the meat and can reduce the level of polycyclic aromatic hydrocarbons (PAHs) in the final product. The effects of the inclusion of natural plant extracts such as bay leaf (BL), black pepper (BP), turmeric (TU), jalapeno pepper (JP) and tamarind paste (TA) in marinades on the physicochemical properties of grilled pork neck were studied. The addition of spice extracts to marinades increased the proportion of colour components L* and b*. The use of TU, TA, JP, MX and C marinades lowered the hardness and pH of the meat. The highest phenolic compound levels were observed in the case of the mixture of all extracts (MX) and JP marinades, and the highest total antioxidant capacity was exhibited by the BL and MX marinades. The highest PAH content was recorded in the CON marinade (Σ12PAH 98.48 ± 0.81 µg/kg) and the lowest in the JP marinade (4.76 ± 0.08 µg/kg), which had the strongest, statistically significant reducing effect (95% reduction) on PAH levels. Analysis of correlation coefficients showed a relationship between the total antioxidant capacity of the marinades and the PAH content in grilled pork.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 592
Author(s):  
Miroslawa Prochon ◽  
Oleksandra Dzeikala

The problem of plastic waste has long been a concern for governments and society. However, huge amounts of plastic are still being released into the oceans and the environment. One possible solution is to replace plastics with materials that are more both biodecomposable and biodegradable. The most environmentally friendly materials are made of natural ingredients found in nature, although not all of them can be called biodegradable. In this study, we set out to create a new composite with functional properties that could replace commonly used disposable packaging. To ensure the competitiveness of our solution, we used inexpensive and readily available components, such as gelatin G HOOCCH2CH2C(R1)NHCOCH2NH2 (where R1 is a continuation of the peptide chain), polyvinyl alcohol PVA CH2CH(OH), and glycerin G HOCH2CH(CH2OH)O. The ingredients used in the research come from natural sources; however, they are chemically processed. Some of them, such as polyvinyl alcohol, for example, are biodegradable. With the appropriate selection of the components, in the casting process, the intermixed components made it possible to produce materials that were characterized by good physicochemical properties, including thermal stability, optical transmission of UV-Vis light, cross-linking density, and mechanical strength. The most favorable parameters of thermal stability were observed in casein-containing gelatine forms. The best cross-linking density was obtained in the case of gelatin–glycerine systems. Composite containing caseins distinguished by the highest resistance to flammability, increased thermal stability, flexibility, and greater hardness compared to other composites.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 423
Author(s):  
Rosa M. Giráldez-Pérez ◽  
Elia Grueso ◽  
Inmaculada Domínguez ◽  
Nuria Pastor ◽  
Edyta Kuliszewska ◽  
...  

The design and preparation of novel nanocarriers to transport cancer drugs for chemotherapy purposes is an important line of research in the medical field. A new 5-fluorouracil (5-Fu) transporter was designed based on the use of two new biocompatible gold nanosystems: (i) a gold nanoparticle precursor, Au@16-Ph-16, stabilized with the positively charged gemini surfactant 16-Ph-16, and (ii) the compacted nanocomplexes formed by the precursor and DNA/5-Fu complexes, Au@16-Ph-16/DNA–5-Fu. The physicochemical properties of the obtained nanosystems were studied by using UV–visible spectroscopy, TEM, dynamic light scattering, and zeta potential techniques. Method tuning also requires the use of circular dichroism, atomic force microscopy, and fluorescence spectroscopy techniques for the prior selection of the optimal relative Au@16-Ph-16 and DNA concentrations (R = CAu@16-Ph-16/CDNA), biopolymer compaction/decompaction, and 5-Fu release from the DNA/5-Fu complex. TEM experiments revealed the effective internalization of the both precursor and Au@16-Ph-16/DNA–5-Fu-compacted nanosystems into the cells. Moreover, cytotoxicity assays and internalization experiments using TEM and confocal microscopy showed that the new strategy for 5-Fu administration enhanced efficacy, biocompatibility and selectivity against lung cancer cells. The differential uptake among different formulations is discussed in terms of the physicochemical properties of the nanosystems.


Author(s):  
Toyohito Oriyama ◽  
Takehito Yamamoto ◽  
Katsuhiko Nara ◽  
Yohei Kawano ◽  
Katsuyoshi Nakajima ◽  
...  

Abstract Background Permeability of antineoplastic agents through medical gloves is an important factor that must be considered for the appropriate selection of gloves. However, predicting the permeability of antineoplastic agents through medical gloves based on their physicochemical properties remains difficult. Thus, this study aimed to elucidate the relationship between the physicochemical properties and permeability of antineoplastic agents through medical gloves. Additionally, we tried to predict the risk of permeation of antineoplastic agents through medical gloves based on physicochemical parameters. Methods Ten antineoplastic agents (carboplatin, carmustine, cisplatin, cyclophosphamide, doxorubicin, etoposide, fluorouracil, ifosfamide, oxaliplatin, and paclitaxel) with varying physicochemical properties were investigated, and their permeation rates (PRs) through nitrile medical gloves of varying thicknesses (0.05, 0.07, and 0.1 mm) were measured using a continuous flow in-line cell device. We also determined the apparent permeation clearance (CLP,app) values of the antineoplastic agents based on their PRs at 240 min (PR240) and assessed the relationship between CLP,app and physicochemical parameters [molecular weight (MW) and logarithm of octanol-water partition coefficient (LogP)]. Results The CLP,app values of the 10 antineoplastic agents through nitrile medical gloves (0.05 mm thickness) were significantly correlated with their MWs, but not their LogP values (P = 0.026 and 0.39, respectively; Spearman’s rank correlation). This finding indicated that the rates of diffusion of the antineoplastic agents in the glove material showed greater effects on CLP,app than the rates of absorption into the glove surfaces within 240 min of exposure. We then classified the 10 antineoplastic agents into 3 zones (Zone A, high LogP/low MW drugs; Zone B, high LogP/high MW drugs; and Zone C, low LogP) and found that Zones A, B, and C corresponded to high (PR240 > 10 ng/min/cm2), moderate (PR240 < 10 ng/min/cm2), and low (no detectable permeation) permeation risk, respectively. Conclusions The permeation risk of antineoplastic agents through nitrile medical gloves within the actual continuous wearing time in clinical settings could be predicted using MW and LogP values. We believe that the proposed zone classification of antineoplastic agents will be a useful tool for predicting the permeation risk of antineoplastic agents through medical gloves.


Sign in / Sign up

Export Citation Format

Share Document