Cruciferous Oilseed Proteins: the Protein Bodies of Sinapis alba Seed

1976 ◽  
Vol 3 (6) ◽  
pp. 731 ◽  
Author(s):  
JTO Kirk ◽  
NA Pyliotis

The solubility properties of the proteins of oil-free meal of white mustard seed (S. alba) in various aqueous extraction media are described. Electrophoresis on cellulose acetate of a salt extract of the seed meal at pH 7.0 shows the presence of two positively charged protein bands: a slow moving intense band (I) and a less intense band with higher mobility (II). On the basis of Sephadex G100 chromatography and sedimentation behaviour, these bands are deemed to be identical with the two major protein classes (12 S and 1.7 S, respectively) present in this and other Brassica-related species, as described by other workers. Centrifugation after filtration of a seed meal homogenate yields a preparation that is completely soluble in salt solution, and can be shown by electron microscopy to consist entirely of protein body fragments. Only the 12 S protein can be detected in significant quantity in this preparation: this protein at least we may assume to be present in the aleurone (protein) grains observed in micrographs of the cotyledon cells. In germinating seeds, disappearance of protein bodies is accompanied by a diminution in total salt-soluble protein and in the amounts of the 12 S and 1.7 S proteins, supporting their identification as storage proteins. The rate of utilization is the same in the light and in the dark. Proteolytic activity was detected in the ungerminated seed. The level of activity was more than sufficient to account for the subsequent observed rate of protein utilization. Proteolytic activity per seed increased by only 40-70% during 4 days germination.

1980 ◽  
Vol 7 (3) ◽  
pp. 339 ◽  
Author(s):  
S Craig ◽  
A Millerd ◽  
DJ Goodchild

The site of sequestration of the storage proteins legumin and vicilin during development of cotyledons from pea (Pisum sativum L.) has been determined using improved immunocytochemical techniques. Antibodies to legumin and vicilin were made monospecific by affinity chromatography. They were allowed to react on sections of glycol methacrylate-embedded cotyledon tissue and detected by indirect immunocytochemical localization using rhodamine-labelled antibodies. The enzyme-linked immunosorbent assay (ELISA) technique was adapted to verify antibody specificity at a sensitivity up to 300 times greater than that of immunodiffusion. Legumin and vicilin 4 are localized in small peripheral deposits within large vacuoles as early as day 8 after flowering. As the vacuoles fragment during development the storage proteins continue to be localized in the vacuolar deposits until, at day 16, they entirely fill vacuoles, now termed protein bodies. Thereafter, the protein bodies become more densely packed and retain a similar form from day 22 to maturity. Wherever the same vacuolar deposit of protein body could be observed in adjacent sections, antilegumin and antivicilin 4 labelled both deposits, clearly indicating that both storage proteins are sequestered into the same area of protein.


Author(s):  
C. Lending ◽  
S. Spinelli

The storage proteins of maize (Zea mays L.), like many other cereals, are a group of alcohol-soluble proteins classified as prolamines. In maize these proteins comprise four structurally distinct types and are termed zeins. Zein synthesis is initiated in developing maize endosperm and continues until the seed reaches maturity (between approximately 12 to 50 days after pollination). Zeins are synthesized by polysomes bound to the rough endoplasmic reticulum (RER) and they accumulate as insoluble aggregates called protein bodies. Our previous studies have shown that the zeins are deposited within protein bodies in a defined order in normal genotypes. However, the actual three-dimensional organization of the zeins within protein bodies and the interactions that occur between the various zeins is not known. Our goal is to understand protein body organization and the interactions that occur between the various proteins.The four types of zeins are identified by their molecular weight after separation by SDS-PAGE, and are designated α-, β-, γ- and 6-zeins. The β-, γ-, and δ-zeins are all sulfur-rich proteins, while the α-zeins contain only low amounts of cysteine and methionine. These proteins can be individually detected by immunocytochemical staining of ultrathin sections. Additionally, ultrathin sections poststained with lead citrate and uranyl acetate demonstrate that there are two distinct regions that correlate with the immunocytochemical staining patterns.


1990 ◽  
Vol 68 (11) ◽  
pp. 2353-2360 ◽  
Author(s):  
M. J. Brown ◽  
J. S. Greenwood

The developing endosperm of castor bean has been used extensively as a model system for studies of storage-protein synthesis and processing, yet the path of transport of the storage proteins to the protein bodies has not been elucidated. In this study, immunolocalization of the 11S globulin (crystalloid protein) was performed on sections of acrolein–glutaraldehydefixed, resin-embedded, developing castor bean endosperm. Acrolein allowed rapid fixation of the tissue necessary for preserving the ultrastructure of the endomembrane system while maintaining adequate antigenicity of the target protein. Crystalloid protein was localized in the rough endoplasmic reticulum, the known site of synthesis, and in the dense proteinaceous inclusions within the protein bodies. In addition, significant labelling of Golgi complexes and associated vesicles, 65-nm diameter coated vesicles, and larger 220-nm diameter cytoplasmic vesicles was obtained. The findings provide the first direct evidence that the storage parenchyma cells of developing castor bean endosperm possess well-developed, functional Golgi complexes. This is consistent with previous observations of seed storage proteins in other plant species. The study further suggests that two distinct classes of vesicles are involved in the transport of the 11S globulin to the protein bodies. Key words: Golgi, immunolocalization, protein body, Ricinus communis, storage protein, transport (protein).


1980 ◽  
Vol 58 (6) ◽  
pp. 699-711 ◽  
Author(s):  
Ernest Spitzer ◽  
John N. A. Lott

Protein bodies of dry seeds of tomato (Lycopersicon esculentum) from radicle, hypocotyl, cotyledon, and endosperm tissue were extensively studied using thin-sectioning, freeze-fracturing and energy dispersive x-ray (EDX) analysis. Protein bodies varied in size, were oval to circular in section, and generally consisted of a proteinaceous matrix, globoid crystal, and protein crystalloid components. Size, shape, and arrangements of globoid crystals and protein crystalloids varied even within the same cell. Globoid crystals were generally oval to circular in section. They were always surrounded by a proteinaceous matrix. In a given protein body the number present ranged from a few to numerous. A protein body generally contained only one protein crystalloid. In section, protein crystalloids were irregular or angular in shape. They were composed of substructural particles which formed lattice planes. EDX analysis of tomato seed globoid crystals revealed the presence of P, K, and Mg in all cases, a fact that is consistent with globoid crystals being phytin-rich. Rarely, small amounts of calcium were found along with P, K, and Mg in globoid crystals of each of the tissue regions considered. The distribution pattern of cells with Ca containing globoid crystals was random. Small amounts of Fe and Mn were also found in the globoid crystals of protein bodies from certain cell types. These two elements, unlike calcium, were specific in terms of their distribution. Globoid crystals from the protodermal cells often contained Mn and Fe. The globoid crystals from provascular tissue of radicle, hypocotyl, and cotyledon regions often contained Fe while globoid crystals in the first layer of large cells surrounding these provascular areas always contained Fe. Results from EDX analysis of the proteinaceous material from the protein bodies are presented and discussed as are variations in elemental content due to different fixations.


2010 ◽  
Vol 24 (4) ◽  
pp. 440-445 ◽  
Author(s):  
Daniel T. Earlywine ◽  
Reid J. Smeda ◽  
Travis C. Teuton ◽  
Carl E. Sams ◽  
Xi Xiong

Oriental mustard seed meal (MSM), a byproduct generated by pressing the seed for oil, exhibits herbicidal properties. In turfgrass, soil fumigants such as methyl bromide are used to control weeds prior to renovation of turf. Environmental concerns have resulted in deregistration of methyl bromide, prompting the need for alternatives. The objective of this research was to determine the effect of MSM on the establishment of selected turfgrass weeds as well as inhibitory effects on establishment of desirable turfgrasses. Greenhouse experiments were conducted in 2006 and 2007 at the University of Missouri. MSM was amended in soil at 0, 1,350 (low), 2,350 (medium), and 3,360 kg ha−1(high) concentrations. Weed species included annual bluegrass, large crabgrass, buckhorn plantain, white clover, and common chickweed. Turfgrass species included: Rembrandt tall fescue, Evening Shade perennial rye, and Riviera bermudagrass. All species were seeded into soil amended with MSM and either tarped or left untarped. All treatments were compared to dazomet (392 kg ha−1), a synthetic standard. Plant counts and biomass of all species were recorded 4 wk after seeding. Overall, tarped treatments suppressed weed emergence 27 to 50% more compared to untarped treatments, except for large crabgrass. High rates of MSM suppressed emergence of all weeds ≥ 63%. Compared to the untreated control, the density of buckhorn plantain, white clover, and common chickweed was reduced by ≥ 42% at low rates of MSM. Biomass of buckhorn plantain, annual bluegrass, common chickweed, white clover, and large crabgrass was reduced from 37 to 99% at high rates of MSM. MSM at high rates reduced stand counts of tall fescue and perennial ryegrass up to 81% and 77% respectively, compared to the untreated control. Regardless of MSM rates or tarping, suppression of common bermudagrass emergence did not exceed 30%; tarped treatments actually increased bermudagrass emergence by 22%. The biomass for tall fescue, perennial ryegrass, and bermudagrass was reduced by 85, 68, and 10%, respectively, at high rates of MSM. For tall fescue, MSM at all rates strongly suppressed seed germination by 7 d after planting (DAP) (up to 100%), with additional germination observed through 14 DAP, but not thereafter. In both trials, dazomet completely suppressed emergence of all weeds. MSM appears to suppress emergence and growth of a number of weeds common in turf, with potential selectivity for bermudagrass.


2017 ◽  
Vol 27 (3) ◽  
pp. 206-216 ◽  
Author(s):  
Juliana F. Santos ◽  
Lynnette M.A. Dirk ◽  
A. Bruce Downie ◽  
Mauricio F.G. Sanches ◽  
Roberval D. Vieira

AbstractObtaining corn hybrid seeds (Zea mays L.) with high vigour depends on the parental lines and the direction of the cross, and this relates to seed desiccation tolerance and composition. This research studied reciprocal crosses between pairs of proprietary, elite parent lines (L1 and L5; L2 and L4) producing hybrid seeds with different qualities attempting to correlate vigour with seed composition, focusing on storage proteins, starch and soluble sugar amounts. Four corn hybrid seed lots produced from reciprocal crosses were compared (HS 15 with HS 51, and HS 24 with HS 42) by assessing germination, vigour, and seedling emergence in the field. Seed composition was assessed in mature, dehydrated seeds. Proteins were extracted, quantified, and analysed by electrophoresis and densitometry. Starch amounts were assessed using a kit and soluble sugars were determined using high performance liquid chromatography with pulsed electrochemical detection. The L1 and L2 lineages, used as female parents, provided seeds with lower vigour; however, the quantification of major protein bands, and sucrose, raffinose and stachyose were similar between seed lot pairs. While both total seed protein and starch varied between reciprocal hybrids for one of the two sets of crosses, the amounts of neither correlated with seed vigour. Interestingly, hybrids with low seed vigour (HS 15, HS 24) accumulated greater amounts of fructose relative to their reciprocal; correlation analysis confirmed these results. We demonstrate different effects on seed vigour dependent on the maternal parent in reciprocal crosses producing hybrid corn seeds. We also show that vigour is negatively correlated with seed reducing sugar contents.


1978 ◽  
Vol 5 (1) ◽  
pp. 89 ◽  
Author(s):  
JNA Lott ◽  
MS Buttrose

Inclusions were found in protein bodies in cotyledons of seeds of each of five legume species (Acacia conferta, Cassia artemisioides, Clianthus formosus, Glycine max, Vicia faba). They were studied by a number of techniques: thin sectioning of fixed, embedded tissue; freeze-fracturing of unfixed tissue; chemical analysis of P, K, Mg and Ca content; and energy dispersive X-ray (EDX) analysis of both sections of glutaraldehyde-fixed tissue and freeze-dried tissue powders. The results of the studies presented in this paper, combined with a critical evaluation of the published research on legume protein body structure, lead us to believe that globoid crystals are a frequent occurrence in legume protein bodies. EDX analysis results indicate that electron-dense globoid crystals are rich in phytin and that phytin may also be present throughout the proteinaceous matrix portions of some legume protein bodies.


1979 ◽  
Vol 6 (1) ◽  
pp. 11 ◽  
Author(s):  
PJ Randall ◽  
JA Thomson ◽  
HE Schroeder

The quantitative and qualitative effects of deficiency of S, P, K or Mg on the cotyledonary proteins of pea seeds have been studied using chemical, immunological and electrophoretic techniques. Deficiency of S, P or K causes characteristic and consistent changes in the proportions of certain proteins both outside and inside protein bodies of mature seeds. Amongst the storage proteins in the protein bodies, S deficiency results in a relative decrease in legumin and in vicilin peak 3, accompanied by a relative increase in the predominant vicilin, peak 4. A quantitatively major cotyledonary protein of unknown function, located outside protein bodies and consisting of 22- kdalton polypeptides, is decreased by S deficiency. Deficiencies of P or K cause an increase in the quantitatively minor vicilin peak 3 and also a marked relative increase in legumin. Mg deficiency has little effect on the proportions of the storage proteins. The degree of nutrient deficiency is reflected in seed and plant yields. Total N and trichloroacetic acid (TCA)-insoluble N and the contents of some other mineral elements in the seed are given. A 10-fold increase in sulfur supply above the optimum for yield did not increase N or S in the TCA- insoluble fraction.


1982 ◽  
Vol 30 (1) ◽  
pp. 32-36 ◽  
Author(s):  
Jean Claude Pernollet ◽  
Su Il Kim ◽  
Jacques Mosse

Sign in / Sign up

Export Citation Format

Share Document