scholarly journals Tensile behaviour of individual fibre bundles in the human lumbar anulus fibrosus

2018 ◽  
Vol 67 ◽  
pp. 24-31 ◽  
Author(s):  
Diana T. Pham ◽  
Joe G. Shapter ◽  
John J. Costi
1979 ◽  
Vol 44 (6) ◽  
pp. 1942-1948 ◽  
Author(s):  
Jaroslav Hrouz ◽  
Michal Ilavský ◽  
Ivan Havlíček ◽  
Karel Dušek

The viscoelastic penetration and tensile behaviour of poly(methyl acrylate) and poly(ethyl acrylate) in the main transition region have been investigated. It was found that the time-temperature superposition could be carried out in the case of the penetration viscoelastic behaviour; the temperature dependence of the penetration and tensile shift factors was the same. The superimposed curves of the penetration and Young modulus allowed us to calculate the dependence of the Poisson ratio and thus to characterize the change in sample volume with deformation. It was demonstrated that the penetration method of determination of the viscoelastic behaviour is equivalent to the tensile method.


2007 ◽  
Vol 345-346 ◽  
pp. 45-48 ◽  
Author(s):  
Jozef Zrník ◽  
Sergey V. Dobatkin ◽  
Ondrej Stejskal

The article focuses on the results from recent experimental of severe plastic deformation of low carbon (LC) steel and medium carbon (MC) steel performed at increased temperatures. The grain refinement of ferrite respectively ferrite-pearlite structure is described. While LC steel was deformed by ECAP die (ε = 3) with a channel angle φ = 90° the ECAP severe deformation of MC steel was conducted with die channel angle of 120° (ε = 2.6 - 4). The high straining in LC steel resulted in extensively elongated ferrite grains with dense dislocation network and randomly recovered and polygonized structure was observed. The small period of work hardening appeared at tensile deformation. On the other side, the warm ECAP deformation of MC steel in dependence of increased effective strain resulted in more progressive recovery process. In interior of the elongated ferrite grains the subgrain structure prevails with dislocation network. As straining increases the dynamic polygonization and recrystallization became active to form mixture of polygonized subgrain and submicrocrystalline structure. The straining and moderate ECAP temperature caused the cementite lamellae fragmentation and spheroidzation as number of passes increased. The tensile behaviour of the both steels was characterized by strength increase however the absence of strain hardening was found at low carbon steel. The favourable effect of ferrite-pearlite structure modification due straining was reason for extended work hardening period observed at MC steel.


Author(s):  
V Vignesh Kumar ◽  
K Raja ◽  
T Ramkumar ◽  
M Selvakumar ◽  
TS Senthil Kumar

The research article addresses the reciprocating wear behaviour of hybrid AA7075 reinforced with boron carbide and boron nitride through a stir-casting technique. The experiment involved varying wt.% of the secondary particle boron carbide (3, 6 and 9) while boron nitride (3) was kept as constant. The hybrid composites were characterised using scanning electron microscopy coupled with energy dispersive spectroscopy. The hardness and tensile behaviour of the hybrid composites were evaluated. Reciprocating wear behaviour of the hybrid composites were examined using a tribometer by varying the wear parameters such as load and sliding distance. The results revealed that AA7075/6boron carbide/3boron nitride had better hardness, tensile and wear properties. The surface morphology of the wear samples was analysed using SEM.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 700
Author(s):  
Maria Concetta Oddo ◽  
Giovanni Minafò ◽  
Lidia La Mendola

In recent years, the scientific community has focused its interest on innovative inorganic matrix composite materials, namely TRM (Textile Reinforced Mortar). This class of materials satisfies the need of retrofitting existing masonry buildings, by keeping the compatibility with the substrate. Different recent studies were addressed to improve the knowledge on their mechanical behaviour and some theoretical models were proposed for predicting the tensile response of TRM strips. However, this task is complex due to the heterogeneity of the constituent materials and the stress transfer mechanism developed between matrix and fabric through the interface in the cracked stage. This paper presents a state-of-the-art review on the existing constitutive models for the tensile behavior of TRM composites. Literature experimental results of tensile tests on TRM coupons are presented and compared with the most relevant analytical models proposed until now. Finally, a new experimental study is presented and its results are used to further verify the reliability of the literature expressions.


Author(s):  
J. Shi

Scatter in test results is common for relatively brittle materials such as ceramic matrix composites. The scatter may come from differences in material processing conditions, specimen machining/handling and from variations in test parameters for nominally the same test material. Large scatter in test results makes material modeling difficult. In the past, master curve concepts have been proposed to reduce scatter in tensile data and to interpret fatigue/creep results. In this paper, one such concept is examined in detail by applying it to the recent tensile test results of a SiC/SiC composite. It was found that the way to construct master curves did not apply to the CMC studied and thus a new master curve was developed to better represent the tensile data. In addition, the test data were analysed statistically based on the new master curve.


Sign in / Sign up

Export Citation Format

Share Document