scholarly journals Structural analysis of zeolite NaA synthesized by a cost-effective hydrothermal method using kaolin and its use as water softener

2012 ◽  
Vol 367 (1) ◽  
pp. 34-39 ◽  
Author(s):  
A.R. Loiola ◽  
J.C.R.A. Andrade ◽  
J.M. Sasaki ◽  
L.R.D. da Silva
2021 ◽  
Vol 13 (15) ◽  
pp. 8421
Author(s):  
Yuan Gao ◽  
Jiandong Huang ◽  
Meng Li ◽  
Zhongran Dai ◽  
Rongli Jiang ◽  
...  

Uranium mining waste causes serious radiation-related health and environmental problems. This has encouraged efforts toward U(VI) removal with low cost and high efficiency. Typical uranium adsorbents, such as polymers, geopolymers, zeolites, and MOFs, and their associated high costs limit their practical applications. In this regard, this work found that the natural combusted coal gangue (CCG) could be a potential precursor of cheap sorbents to eliminate U(VI). The removal efficiency was modulated by chemical activation under acid and alkaline conditions, obtaining HCG (CCG activated with HCl) and KCG (CCG activated with KOH), respectively. The detailed structural analysis uncovered that those natural mineral substances, including quartz and kaolinite, were the main components in CCG and HCG. One of the key findings was that kalsilite formed in KCG under a mild synthetic condition can conspicuous enhance the affinity towards U(VI). The best equilibrium adsorption capacity with KCG was observed to be 140 mg/g under pH 6 within 120 min, following a pseudo-second-order kinetic model. To understand the improved adsorption performance, an adsorption mechanism was proposed by evaluating the pH of uranyl solutions, adsorbent dosage, as well as contact time. Combining with the structural analysis, this revealed that the uranyl adsorption process was mainly governed by chemisorption. This study gave rise to a utilization approach for CCG to obtain cost-effective adsorbents and paved a novel way towards eliminating uranium by a waste control by waste strategy.


RSC Advances ◽  
2017 ◽  
Vol 7 (18) ◽  
pp. 11000-11011 ◽  
Author(s):  
Qi Xun Xia ◽  
Jianjian Fu ◽  
Je Moon Yun ◽  
Rajaram S. Mane ◽  
Kwang Ho Kim

A Ti3C2TxMXene electrode decorated with NiO nanosheets was synthesized by a facile and cost-effective hydrothermal method.


2014 ◽  
Vol 938 ◽  
pp. 140-144 ◽  
Author(s):  
S. Blessi ◽  
S. Vijayalakshmi ◽  
S. Pauline

Multiferroics have been known as materials exhibiting both ferroelectric and ferromagnetic properties in same phase, they have interesting physical properties as well as possibility of practical application in some new memories, spintronics and sensor devices. The present work reports the fabrication of pure and Nickel substituted Bismuth Ferrite by simple hydrothermal method at 180oC for 11 hours. The structural study was carried out using X-ray powder diffraction (XRD), and the Dielectric properties were investigated over a wide range of frequency and temperature. The image of SEM is in good agreement with the XRD analysis. The synthesis method is simple and cost effective. KEYWORDS: Multiferroics; Dielectric loss; Hydrothermal method; XRD.


2013 ◽  
Vol 229 ◽  
pp. 388-398 ◽  
Author(s):  
N. Sapawe ◽  
A.A. Jalil ◽  
S. Triwahyono ◽  
M.I.A. Shah ◽  
R. Jusoh ◽  
...  

2016 ◽  
Vol 675-676 ◽  
pp. 53-56
Author(s):  
Supawadee Pokai ◽  
Puenisara Limnonthakul ◽  
Mati Horprathum ◽  
Sukon Kalasung ◽  
Pitak Eiamchai ◽  
...  

Zinc oxide (ZnO) nanorods (NRs) promise high potentials in several applications, such as photovoltaic device, thermoelectric device, sensor and solar cell. In this research, the vertical alignment of ZnO NRs was fabricated by hydrothermal method with various precursor concentrations and growth time on different seed layers (ZnO and Au), which deposited on silicon wafer substrate (100). The crystalline structure and morphology of ZnO NRs have been characterized by x-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) techniques, respectively. The x-ray diffraction pattern shows that the prepared samples have a strong preferred orientation (002) plane. FE-SEM images of the ZnO NRs, it found that the density and aspect ratio were strongly influenced by the seed layer and precursor concentration. In addition, the aspect ratio of ZnO NRs was increased with increasing growth time. This study provides a cost effective method for the fabrication of well aligned ZnO NRs for nano-electronic devices.


RSC Advances ◽  
2016 ◽  
Vol 6 (101) ◽  
pp. 99120-99128 ◽  
Author(s):  
Gurpreet Kaur ◽  
Bikramjeet Singh ◽  
Paviter Singh ◽  
Manpreet Kaur ◽  
Karmjeet Kaur Buttar ◽  
...  

Preferentially grown nanostructured iron disulfide pyrite (111) was successfully synthesized using a low cost effective hydrothermal method, then employed as a photocatalyst for degradation of methylene blue and the textile dye Synazol Yellow K-HL.


2018 ◽  
Vol 5 (8) ◽  
pp. 1795-1799 ◽  
Author(s):  
Jiahao Yu ◽  
Fulin Yang ◽  
Gongzhen Cheng ◽  
Wei Luo

A facile and cost-effective one-step hydrothermal method is used to synthesize NiFe LDH microclusters with a 3D hierarchically mesoporous architecture. This superior electrocatalyst can achieve a current density of 10 mA cm−2 with an ultralow overpotential of 211 mV toward the oxygen evolution reaction.


2017 ◽  
Vol 40 (1-2) ◽  
Author(s):  
Mohsen Kord ◽  
Kambiz Hedayati ◽  
Marziyeh Farhadi

AbstractIn this work, flower-like nanoparticles of lead sulfide (PbS) and metal-doped PbS nanostructures were synthesized via a simple hydrothermal method in water as a green solvent. The effect of temperature, precipitating agent and capping agent on the morphology and particle size of the products was investigated. Sugars were used as green, safe, cost-effective, and bio-compatible capping agents. The prepared products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and ultra violet-visible spectroscopy. The effect of PbS as a photocatalyst on the degradation of three different azo dyes was investigated. Acid brown, acid violet, and acid blue were totally degraded at 60 min under ultra-violet irradiation.


Sign in / Sign up

Export Citation Format

Share Document