Preparation of hybrid organic-inorganic mesoporous silicas applied to mercury removal from aqueous media: Influence of the synthesis route on adsorption capacity and efficiency

2016 ◽  
Vol 472 ◽  
pp. 126-134 ◽  
Author(s):  
Damián Pérez-Quintanilla ◽  
Alfredo Sánchez ◽  
Isabel Sierra
1999 ◽  
Vol 40 (7) ◽  
pp. 109-116 ◽  
Author(s):  
M. H. Ansari ◽  
A. M. Deshkar ◽  
P. S. Kelkar ◽  
D. M. Dharmadhikari ◽  
M. Z. Hasan ◽  
...  

Steamed Hoof Powder (SHP), size < 53μ, was observed to have high adsorption capacity for Hg(II) with >95% removal from a solution containing 100 mg/L of Hg(II) with only 0.1% (W/V) concentration of SHP. The SHP has good settling properties and gives clear and odour free effluent. Studies indicate that pH values between 2 and 10 have no effect on the adsorption of Hg(II) on SHP. Light metal ions like Na+, K+, Ca2+ and Mg2+ up to concentrations of 500 mg/L and heavy metals like Cu2+, Zn2+, Cd2+, Co2+, Pb2+, Ni2+, Mn2+, Cr3+, Cr6+, Fe2+ and Fe3+ up to concentrations of 100 mg/L do not interfere with the adsorption process. Anions like sulphate, acetate and phosphate up to concentrations of 200 mg/L do not interfere. Chloride interferes in the adsorption process when Hg(II) concentration is above 9.7 mg/L. The adsorption equilibrium was established within two hours. Studies indicate that adsorption occurs on the surface sites of the adsorbent.


2016 ◽  
Vol 75 (1) ◽  
pp. 106-114 ◽  
Author(s):  
Lucas Meili ◽  
Társila Santos da Silva ◽  
Daniely Carlos Henrique ◽  
João Inácio Soletti ◽  
Sandra Helena Vieira de Carvalho ◽  
...  

In this work, the potential of ouricuri (Syagrus coronata) fiber as a novel biosorbent to remove methylene blue (MB) from aqueous solutions was investigated. The fiber was prepared and characterized according to the fundamental features for adsorption. A 23 experimental design was used to evaluate the effects of adsorbent dosage (M), fiber diameter (D) and agitation (A) on the adsorption capacity. In the more adequate conditions, kinetic and equilibrium studies were performed. The experimental design results showed that M = 10 g L−1), D = 0.595 mm and A = 200 rpm were the more adequate conditions for MB adsorption. Based on the kinetic study, it was found that the adsorption process was fast, being the equilibrium was attained at about 5 min, with 90% of color removal. The isotherm was properly represented by the Sips model, and the maximum adsorption capacity was 31.7 mg g−1. In brief, it was demonstrated that ouricuri fiber is an alternative biosorbent to remove MB from aqueous media, taking into account the process efficiency and economic viewpoint.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Md. Nabul Sardar ◽  
Nazia Rahman ◽  
Shahnaz Sultana ◽  
Nirmal Chandra Dafader

Abstract This study focuses on the adsorption of hazardous Cr (III) and Cu (II) ions from aqueous solution by applying modified waste polypropylene (PP) fabric as an adsorbent. Pre-irradiation technique was performed for grafting of sodium styrene sulfonate (SSS) and acrylic acid (AAc) onto the PP fabric. The monomer containing 8% SSS and 16% AAc in water was used. Graft yield at 30 kGy radiation dose was 390% when 4% NaCl was added as additive. The prepared adsorbent was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermo-gravimetric analysis (TGA) and dynamic mechanical analyzer (DMA). The influences of different parameters including pH, contact time, temperature and initial metal ion concentration were also investigated. The equilibrium adsorption data were better fitted to the Langmuir isotherm model with maximum monolayer adsorption capacity 384.62 mg/g for Cr (III) and 188.68 mg/g for Cu (II) ions. The kinetic data were better explained by pseudo first-order kinetic model having good matching between the experimental and theoretical adsorption capacity. The adsorption process was spontaneous, endothermic and thermodynamically feasible. Furthermore, investigation of desorption of metal ions and reuse of the adsorbent suggesting that the adsorbent is an efficient and alternative material in the removal of Cr (III) and Cu (II) from aqueous media.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1537 ◽  
Author(s):  
Kosmas Vamvakidis ◽  
Theodora-Marianna Kostitsi ◽  
Antonis Makridis ◽  
Catherine Dendrinou-Samara

Water pollution by heavy metals is one of the most serious worldwide environmental issues. With a focus on copper(II) ions and copper complex removal, in the present study, ultra-small primary CoFe2O4 magnetic nanoparticles (MNPs) coated with octadecylamine (ODA) of adequate magnetization were solvothermally prepared. The surface modification of the initial MNPs was adapted via three different chemical approaches based on amine and/or carboxylate functional groups: (i) the deposition of polyethylimide (PEI), (ii) covalent binding with diethylenetriaminepentaacetic acid (DTPA), and (iii) conjugation with both PEI and DTPA, respectively. FT-IR, TGA, and DLS measurements confirmed that PEI or/and DTPA were successfully functionalized. The percentage of the free amine (−NH2) groups was also estimated. Increased magnetization values were found in case of PEI and DTPA-modified MNPs that stemmed from the adsorbed amine or oxygen ligands. Comparative UV–Vis studies for copper(II) ion removal from aqueous solutions were conducted, and the effect of time on the adsorption capacity was analyzed. The PEI-modified particles exhibited the highest adsorption capacity (164.2 mg/g) for copper(II) ions and followed the pseudo-second-order kinetics, while the polynuclear copper(II) complex Cux(DTPA)y was also able to be immobilized. The nanoadsorbents were quickly isolated from the solution by magnetic separation and regenerated easily by acidic treatment.


2020 ◽  
Vol 10 (8) ◽  
pp. 2726 ◽  
Author(s):  
Roxana Nicola ◽  
Otilia Costişor ◽  
Mihaela Ciopec ◽  
Adina Negrea ◽  
Radu Lazău ◽  
...  

Magnetic iron oxide-silica shell nanocomposites with different iron oxide/silica ratio were synthesized and structurally characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), small-angle neutron scattering, magnetic and N2-sorption studies. The composite that resulted with the best properties in terms of contact surface area and saturation of magnetization was selected for Pb2+ adsorption studies from aqueous media. The material presented good absorption capacity (maximum adsorption capacity 14.9 mg·g−1) comparable with similar materials presented in literature. Its chemico-physical stability and adsorption capacity recommend the nanocomposite as a cheap adsorbent material for lead.


2019 ◽  
Vol 80 (5) ◽  
pp. 874-883 ◽  
Author(s):  
Shenmaishang Li ◽  
Zuoxiang Zeng ◽  
Weilan Xue

Abstract Modified walnut shell (EAWNS) was prepared by reaction with epichlorohydrin and alkaline solution of aspartic acid and used to remove reactive dye (Reactive Brilliant Blue (KN-R)) from aqueous media. The isotherms, kinetics and thermodynamics of KN–R adsorption onto EAWNS were studied at 298–318 K. The isotherm data of KN–R adsorption onto EAWNS agreed closely with the Langmuir model. The theoretical monolayer adsorption capacity for KN–R was 224.42 mg/g at 318 K. The result from the Dubinin–Radushkevich model showed that the KN–R adsorption onto EAWNS is chemisorption. The adsorption rate of KN–R onto EAWNS conformed to the pseudo-second-order model. The diffusion mechanism was investigated by the intraparticle diffusion model. The mass-transfer coefficient calculated by the surface mass-transfer coefficient model was in range of 2.95 × 10−5 to 2.93 × 10−4cm/s. The thermodynamic results suggested that the adsorption of KN–R onto EAWNS is spontaneous and endothermic in nature. The design of a single-stage batch adsorption process based on EAWNS adsorbent was carried out. Furthermore, the recycled EAWNS maintains high adsorption capacity despite four cycles.


Author(s):  
Aldo A. Castañeda Ramírez ◽  
Elizabeth Rojas García ◽  
Ricardo López Medina ◽  
José L. Contreras Larios ◽  
Raúl Suarez Parra ◽  
...  

Abstract: This work is part of the interest of solving the problems of water contamination with last generation pollutants, for which a novel and in an aqueous medium FeBTC material incorporated with magnetite nanoparticles was proposed. That material was synthesized by in situ solvothermal method, the Fe3O4 nanoparticles were added during the Fe-BTC MOF synthesis and used in the drug’s adsorption. The materials were characterized by XRD, FTIR and Raman spectroscopy, and N2-physisorption at 77 K. Fe3O4-FeBTC material showed a maximum adsorption capacity of 357.1 mg g−1 for diclofenac sodium, 70.9 mg g−1 for naproxen sodium, and 122.9 mg g−1 for Ibuprofen. A pseudo-second-order kinetic model can describe the adsorption process, and the thermodynamic study revealed that the adsorption of the three drugs was a feasible, spontaneous, and exothermic process. The incorporation of magnetite nanoparticles in the FeBTC considerably increased the adsorption capacity of pristine FeBTC. Also, hybridization of the FeBTC with magnetite nanoparticles reinforced the most vulnerable part of the MOF, increasing its thermal and aqueous media stability. The electrostatic interaction, H-bonding, and interactions in the open-metal sites played a vital role in drug adsorption. The competition of sites in the multicomponent mixture's adsorption showed selective adsorption at diclofenac sodium and naproxen sodium.


Author(s):  
Nnaemeka John Okorocha ◽  
J. Josphine Okoji ◽  
Charles Osuji

The potential of almond leaves powder, (ALP) for the removal of Crystal violet (CV) and Congo red (CR) dyes from aqueous solution was investigated. The adsorbent (ALP) was characterized by FTIR and SEM analysis. Batch adsorption studies were conducted and various parameters such as contact time, adsorbent dosage, initial dye concentration, pH and temperature were studied to observe their effects in the dyes adsorption process. The optimum conditions for the adsorption of CV and CR dyes onto the adsorbent (ALP) was found to be: contact time (100mins), pH (10.0), temperature (343K) for an initial CV dye concentration of 50mg/L using adsorbent dose of 1.0g and contact time (100mins), pH (2.0), temperature (333K) for an initial CR dye concentration of 50mg/L using adsorbent dose 1.0g respectively. The experimental equilibrium adsorption data fitted best and well to the Freundlich isotherm model for both CV and CR dyes adsorption. The maximum adsorption capacity of ALP was found to be 22.96mg/g and 7.77mg/g for the adsorption of CV and CR dyes respectively. The kinetic data conformed to the pseudo-second-order kinetic model. Thermodynamic quantities such as Gibbs free energy (ΔG0), enthalpy (ΔH0) and entropy (ΔS0) were evaluated and the negative values of ΔG0obtained for both dyes indicate the spontaneous nature of the adsorption process while the positive values of ΔH0and ΔS0obtained indicated the endothermic nature and increased randomness during the adsorption process respectively for the adsorption of CV and CR onto ALP. Based on the results obtained such as good adsorption capacity, rapid kinetics, and its low cost, ALP appears to be a promising adsorbent material for the removal of CV and CR dye stuff from aqueous media.


Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 882 ◽  
Author(s):  
Haifeng Wen ◽  
Daofang Zhang ◽  
Lin Gu ◽  
Haixiang Yu ◽  
Minmin Pan ◽  
...  

Sludge-derived activated carbon (SAC) was prepared by Fenton activation and calcination, and used as adsorbent to eliminate Eriochrome Black T (EBT) dye from aqueous media. The characterization results indicated that the produced SAC had a porous structure, high specific surface area, and abundant functional groups on its surface. The adsorption process was affected by pH, adsorbent dosage, time, and temperature. The adsorption capacity increased with temperature, and the highest adsorption capacity reached 178.2 mg·g−1 in 48 h at 318 K and pH 6. The results of the adsorption isotherm, kinetic, and thermodynamic analyses revealed that the adsorption of EBT onto SAC was naturally endothermic and spontaneous, involved both physical and chemical processes, and belonged mostly to the multilayer type of adsorption.


Sign in / Sign up

Export Citation Format

Share Document