scholarly journals Selective Adsorption of Aqueous Diclofenac Sodium, Naproxen Sodium and iBuprofen Using a Stable Fe3O4-FeBTC Metal Organic Framework

Author(s):  
Aldo A. Castañeda Ramírez ◽  
Elizabeth Rojas García ◽  
Ricardo López Medina ◽  
José L. Contreras Larios ◽  
Raúl Suarez Parra ◽  
...  

Abstract: This work is part of the interest of solving the problems of water contamination with last generation pollutants, for which a novel and in an aqueous medium FeBTC material incorporated with magnetite nanoparticles was proposed. That material was synthesized by in situ solvothermal method, the Fe3O4 nanoparticles were added during the Fe-BTC MOF synthesis and used in the drug’s adsorption. The materials were characterized by XRD, FTIR and Raman spectroscopy, and N2-physisorption at 77 K. Fe3O4-FeBTC material showed a maximum adsorption capacity of 357.1 mg g−1 for diclofenac sodium, 70.9 mg g−1 for naproxen sodium, and 122.9 mg g−1 for Ibuprofen. A pseudo-second-order kinetic model can describe the adsorption process, and the thermodynamic study revealed that the adsorption of the three drugs was a feasible, spontaneous, and exothermic process. The incorporation of magnetite nanoparticles in the FeBTC considerably increased the adsorption capacity of pristine FeBTC. Also, hybridization of the FeBTC with magnetite nanoparticles reinforced the most vulnerable part of the MOF, increasing its thermal and aqueous media stability. The electrostatic interaction, H-bonding, and interactions in the open-metal sites played a vital role in drug adsorption. The competition of sites in the multicomponent mixture's adsorption showed selective adsorption at diclofenac sodium and naproxen sodium.

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2293
Author(s):  
Aldo Arturo Castañeda Ramírez ◽  
Elizabeth Rojas García ◽  
Ricardo López Medina ◽  
José L. Contreras Larios ◽  
Raúl Suárez Parra ◽  
...  

The FeBTC metal–organic framework (MOF) incorporated with magnetite is proposed as a novel material to solve water contamination with last generation pollutants. The material was synthesized by in situ solvothermal methods, and Fe3O4 nanoparticles were added during FeBTC MOF synthesis and used in drug adsorption. X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and Raman spectroscopy characterized the materials, with N2-physisorption at 77 K. Pseudo-second-order kinetic and Freundlich models were used to describe the adsorption process. The thermodynamic study revealed that the adsorption of three drugs was a feasible, spontaneous exothermic process. The incorporation of magnetite nanoparticles in the FeBTC increased the adsorption capacity of pristine FeBTC. The Fe3O4–FeBTC material showed a maximum adsorption capacity for diclofenac sodium (DCF), then by ibuprofen (IB), and to a lesser extent by naproxen sodium (NS). Additionally, hybridization of the FeBTC with magnetite nanoparticles reinforced the most vulnerable part of the MOF, increasing the stability of its thermal and aqueous media. The electrostatic interaction, H-bonding, and interactions in the open-metal sites played vital roles in the drug adsorption. The sites’ competition in the multicomponent mixture’s adsorption showed selective adsorption (DCF) and (NS). This work shows how superficial modification with a low-surface-area MOF can achieve significant adsorption results in water pollutants.


Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 652 ◽  
Author(s):  
Wang ◽  
Zhao ◽  
Wang ◽  
Zhang ◽  
Zhang

The selective recovery of gold from wastewater is necessary because it is widely used in various fields. In this study, a new polymeric adsorbent (TP-AFC) was prepared by modifying polyaniline with trimethyl phosphate for the selective recovery of gold from wastewater. Bath experiments were carried out to explore the adsorption capacity and mechanism. The optimum pH of adsorption is 4. The adsorption equilibrium is reached at 840 min. The maximum adsorption capacity is 881 mg/g and the adsorption was a spontaneous endothermic process. The adsorption process fitted well with pseudo second-order kinetic and the Langmuir-models. The single-layer chemisorption governed the adsorption process. In addition, the application in wastewater indicated that the interfering ions had no effect on the adsorption of gold ions. TP-AFC has good selectivity. The interaction mechanism was mainly ion exchange and complexation. In general, TP-AFC was successfully prepared and has an excellent future in practical application.


Author(s):  
Nnaemeka John Okorocha ◽  
J. Josphine Okoji ◽  
Charles Osuji

The potential of almond leaves powder, (ALP) for the removal of Crystal violet (CV) and Congo red (CR) dyes from aqueous solution was investigated. The adsorbent (ALP) was characterized by FTIR and SEM analysis. Batch adsorption studies were conducted and various parameters such as contact time, adsorbent dosage, initial dye concentration, pH and temperature were studied to observe their effects in the dyes adsorption process. The optimum conditions for the adsorption of CV and CR dyes onto the adsorbent (ALP) was found to be: contact time (100mins), pH (10.0), temperature (343K) for an initial CV dye concentration of 50mg/L using adsorbent dose of 1.0g and contact time (100mins), pH (2.0), temperature (333K) for an initial CR dye concentration of 50mg/L using adsorbent dose 1.0g respectively. The experimental equilibrium adsorption data fitted best and well to the Freundlich isotherm model for both CV and CR dyes adsorption. The maximum adsorption capacity of ALP was found to be 22.96mg/g and 7.77mg/g for the adsorption of CV and CR dyes respectively. The kinetic data conformed to the pseudo-second-order kinetic model. Thermodynamic quantities such as Gibbs free energy (ΔG0), enthalpy (ΔH0) and entropy (ΔS0) were evaluated and the negative values of ΔG0obtained for both dyes indicate the spontaneous nature of the adsorption process while the positive values of ΔH0and ΔS0obtained indicated the endothermic nature and increased randomness during the adsorption process respectively for the adsorption of CV and CR onto ALP. Based on the results obtained such as good adsorption capacity, rapid kinetics, and its low cost, ALP appears to be a promising adsorbent material for the removal of CV and CR dye stuff from aqueous media.


2017 ◽  
Vol 36 (1-2) ◽  
pp. 287-299 ◽  
Author(s):  
Changkun Liu ◽  
Jizhen Jia ◽  
Ji’an Liu ◽  
Xiaoyan Liang

A novel polypropylene hollow fiber membrane with a new function of selective adsorption of mercury ions in aqueous solutions was successfully prepared. The surface of the polypropylene hollow fiber membrane was initially modified with polydopamine by surface polymerization, and subsequently grafted with polyacrylamide (PAM) polymer brush via the surface initiated atom transfer radical polymerization (SI-ATRP) technique (thereafter named as PP-PAM). This study investigated the adsorption performance of Hg(II) ions by PP-PAM and the effect of various influencing factors on Hg(II) ion adsorption. The experiment indicated that the Hg(II) adsorption capacity of the PP-PAM increased with the increase of the pH, and the Hg(II) adsorption kinetics was consistent with the pseudo-second-order kinetic model. The adsorption isotherm followed the Langmuir model, with the maximum adsorption capacity calculated to be 0.854 mmol/g for Hg(II) ions. The adsorption study in multi-component system indicated that PP-PAM preferentially adsorbs Hg(II) over Pb(II) ions, with significant adsorption capacity difference of the two heavy metal ions. This study provided an efficient method for the preparation of the adsorptive polypropylene hollow fiber membrane, which expands its application for the selective removal of heavy metal ions.


2020 ◽  
Vol 81 (10) ◽  
pp. 2176-2188
Author(s):  
Zekun Yang ◽  
Hailing Wang ◽  
Huiming Sun ◽  
Haifeng Tang ◽  
Guangze Nie

Abstract In order to reduce the environmental impact of benzoic acid (BA), molecular imprinted polymers based on attapulgite were facilely prepared by molecular imprinted technique. The samples were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and thermal gravimetric analysis. The adsorption performance, regeneration stability, and competitive selectivity of BA by benzoic acid-surface molecular imprinted polymers (BA-MIP) were systematically investigated by experiments. For this material, it has a high adsorption capacity of 41 mg/g and an equilibrium adsorption time of about 150 min. Compared with non-imprinted polymers, BA-MIP has a higher adsorption capacity for BA, and the dynamic adsorption behavior of BA by both of them conforms to the quasi-second-order kinetic model. The Langmuir adsorption isotherm equation was fitted the isothermal adsorption experiment. The thermodynamic analysis shows that the adsorption process is an exothermic reaction. The adsorption capacity of BA first increases and then decreases with an increase in pH, and the maximum adsorption capacity is reached at pH = 5. BA-MIP also has excellent selective adsorption capacity and regeneration stability for BA.


2016 ◽  
Vol 75 (1) ◽  
pp. 106-114 ◽  
Author(s):  
Lucas Meili ◽  
Társila Santos da Silva ◽  
Daniely Carlos Henrique ◽  
João Inácio Soletti ◽  
Sandra Helena Vieira de Carvalho ◽  
...  

In this work, the potential of ouricuri (Syagrus coronata) fiber as a novel biosorbent to remove methylene blue (MB) from aqueous solutions was investigated. The fiber was prepared and characterized according to the fundamental features for adsorption. A 23 experimental design was used to evaluate the effects of adsorbent dosage (M), fiber diameter (D) and agitation (A) on the adsorption capacity. In the more adequate conditions, kinetic and equilibrium studies were performed. The experimental design results showed that M = 10 g L−1), D = 0.595 mm and A = 200 rpm were the more adequate conditions for MB adsorption. Based on the kinetic study, it was found that the adsorption process was fast, being the equilibrium was attained at about 5 min, with 90% of color removal. The isotherm was properly represented by the Sips model, and the maximum adsorption capacity was 31.7 mg g−1. In brief, it was demonstrated that ouricuri fiber is an alternative biosorbent to remove MB from aqueous media, taking into account the process efficiency and economic viewpoint.


2010 ◽  
Vol 5 (1) ◽  
Author(s):  
Hülya Karaca ◽  
Turgay Tay ◽  
Merih Kıvanç

The biosorption of lead ions (Pb2+) onto lyophilized fungus Aspergillus niveus was investigated in aqueous solutions in a batch system with respect to pH, contact time and initial concentration of the ions at 30 °C. The maximum adsorption capacity of lyophilized A. niveus was found to be 92.6 mg g−1 at pH 5.1 and the biosorption equilibrium was established about in 30 min. The adsorption capacity obtained is one of the highest value among those reported in the literature. The kinetic data were analyzed using the pseudo-first-order kinetic, pseudo-second-order kinetic, and intraparticle diffusion equations. Kinetic parameters, such as rate constants, equilibrium adsorption capacities, and related correlation coefficients for the kinetic models were calculated and discussed. It was found that the adsorption of lead ions onto lyophilized A. niveus biomass fit the pseudo-second-order kinetic model well. The Langmuir and Freundlich isotherm parameters for the lead ion adsorption were applied and the Langmuir model agreed better with the adsorption of lead ions onto lyophilized A. niveus.


Author(s):  
Lin Ren ◽  
Xudong Zhao ◽  
Baosheng Liu ◽  
Hongliang Huang

Abstract Rapid removal of radioactive strontium from nuclear wastewater is of great significance for environment safety and human health. This work reported the effective adsorption of strontium ion in a stable dual-group metal-organic framework, Zr6(OH)14(BDC-(COOH)2)4(SO4)0.75 (Zr-BDC-COOH-SO4), which contains strontium-chelating groups (-COOH and SO4) and strongly ionizable group (-COOH). Zr-BDC-COOH-SO4 exhibits very rapid adsorption kinetics (<5 min) and a maximum adsorption capacity of 67.5 mg g−1. The adsorption behaviors can be well evaluated by pseudo-second-order model and Langmuir isotherm model. Further investigations indicate that the adsorption of Sr2+ in Zr-BDC-COOH-SO4 would not be interfered by solution pH and adsorption temperature obviously. Feasible regeneration of the adsorbent was also demonstrated through a simple elution method. Mechanism investigation suggests that free -COOH contributes to the rapid adsorption based on electrostatic interaction while introduction of -SO4 can enhance the adsorption capacity largely. Thus, these results suggest that Zr-BDC-COOH-SO4 might be a potential candidate for Sr2+ removal and introducing dual groups is an effective strategy for designing high-efficiency adsorbents.


SAINTIFIK ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. 104-115
Author(s):  
Agusriyadin Agusriyadin

Penelitian ini bertujuan untuk menguji kemampuan AK dan AKPM dalam mengadsorpsi ion Cu (II), pengaruh parameter adsorpsi dan mekanisme adsorpsi. AK dan AKP Madsorben dibuat dari residu ampas kelapa. Adsorben dikarakterisasi dengan FTIR, SEM dan EDS. Pengaruh parameter adsorpsi seperti pH awal, dosis adsorben, waktu kontak dan konsentrasi ion Cu (II) awal diperiksa untuk menentukan kondisi optimum serapan tembaga (II). Ion Cu (II) yang teradsorpsi diukur berdasarkan pada konsentrasi Ion Cu (II) sebelum dan sesudah adsorpsi menggunakan metode AAS. Hasil karakterisasi menunjukkan bahwa struktur pori dan gugus fungsi tersedia pada permukaan adsorben. Menurut percobaan efek pH, kapasitas adsorpsi maksimum dicapai pada pH 7. Waktu kontak optimal dan konsentrasi tembaga awal (II) ditemukan masing-masing pada 120 menit dan 100 mg L-1. Data eksperimental sesuai dengan model kinetik orde dua orde dua, dan Langmuir isoterm adsorpsi yang diperoleh paling sesuai dengan data adsorpsi. Kapasitas adsorpsi maksimum adsorben ditemukan menjadi 4,73 dan 6,46 mg g-1 pada kondisi optimal. The results of characterization showed that the pore structure and the functional groups were available on adsorbent surface. According to the pH effect experiments, the maximum adsorption capacity was achieved at pH 7. Optimum contact time and initial copper(II) concentration were found at 120 min and 100 mg L-1, respectively. The experimental data were comply with the pseudo-second-order kinetic model, and Langmuir adsorption isotherm obtained best fitted the adsorption data. The maximum adsorption capacity of the adsorbents was found to be 4.73 and 6.46 mg g-1 at optimum conditions.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Md. Nabul Sardar ◽  
Nazia Rahman ◽  
Shahnaz Sultana ◽  
Nirmal Chandra Dafader

Abstract This study focuses on the adsorption of hazardous Cr (III) and Cu (II) ions from aqueous solution by applying modified waste polypropylene (PP) fabric as an adsorbent. Pre-irradiation technique was performed for grafting of sodium styrene sulfonate (SSS) and acrylic acid (AAc) onto the PP fabric. The monomer containing 8% SSS and 16% AAc in water was used. Graft yield at 30 kGy radiation dose was 390% when 4% NaCl was added as additive. The prepared adsorbent was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermo-gravimetric analysis (TGA) and dynamic mechanical analyzer (DMA). The influences of different parameters including pH, contact time, temperature and initial metal ion concentration were also investigated. The equilibrium adsorption data were better fitted to the Langmuir isotherm model with maximum monolayer adsorption capacity 384.62 mg/g for Cr (III) and 188.68 mg/g for Cu (II) ions. The kinetic data were better explained by pseudo first-order kinetic model having good matching between the experimental and theoretical adsorption capacity. The adsorption process was spontaneous, endothermic and thermodynamically feasible. Furthermore, investigation of desorption of metal ions and reuse of the adsorbent suggesting that the adsorbent is an efficient and alternative material in the removal of Cr (III) and Cu (II) from aqueous media.


Sign in / Sign up

Export Citation Format

Share Document