Chromium (VI) removal kinetics by magnetite-coated sand: Small-scale flow-through column experiments

2021 ◽  
Vol 415 ◽  
pp. 125648
Author(s):  
Julian Sorwat ◽  
Adrian Mellage ◽  
Markus Maisch ◽  
Andreas Kappler ◽  
Olaf A. Cirpka ◽  
...  
2004 ◽  
Vol 4 (5-6) ◽  
pp. 335-341 ◽  
Author(s):  
Jae-Kyu Yang ◽  
Yoon-Young Chang ◽  
Sung-Il Lee ◽  
Hyung-Jin Choi ◽  
Seung-Mok Lee

Iron-coated sand (ICS) prepared by using FeCl3 and Joomoonjin sand widely used in Korea was used in this study. In batch adsorption kinetics, As(V) adsorption onto ICS was completed within 20 minutes, while adsorption of Pb(II), Cd(II), and Cu(II) onto ICS was slower than that of As(V) and strongly depended on initial pH. At pH 3.5, ICS showed a selective adsorption of Pb(II) compared to Cd( II) and Cu(II) . However, above pH 4.5, near complete removal of Pb(II), Cd(II), and Cu(II) was observed through adsorption or precipitation depending on pH. As(V) adsorption onto ICS occurred through an anionic-type and followed a Langmuir-type adsorption behaviour. In column experiments, pH was identified as an important parameter in the breakthrough of As(V). As(V) breakthrough at pH 4.5 was much slower than at pH 9 due to a strong chemical bonding between As(V) and ICS as similar with batch adsorption behaviour. With variation of ICS amounts, the optimum amount of ICS at pH 4.5 was identified as 5.0 grams in this research. At this condition, ICS could be used to treat 200 mg of As(V) with 1 kg of ICS until 50 ppb of As(V) appeared in the effluent. In this research, as a new treatment system, ICS can be potentially used to treat As(V) and cationic heavy metals.


2017 ◽  
Vol 51 (19) ◽  
pp. 11011-11019 ◽  
Author(s):  
Guohui Wang ◽  
Wooyong Um ◽  
Zheming Wang ◽  
Estela Reinoso-Maset ◽  
Nancy M. Washton ◽  
...  

2010 ◽  
Vol 54 (04) ◽  
pp. 268-280
Author(s):  
Dipti P. Mishra ◽  
Sukanta K. Dash ◽  
P. Anil Kishan

This paper discusses the computation of air entrainment in to the louvers of a cylindrical funnel as a result of a high-velocity isothermal air jet placed inside the funnel having different lengths of protrusion and different funnel diameters. The experimental setup consists of a cylindrical Perspex tube with circular louvers cut around it. The flow through the nozzle is measured with a rotameter, and the velocity at the cylinder outlet is measured with a hot wire anemometer. The numerical simulation is carried out by solving the conservation equations of mass and momentum for the funnel with a surrounding computational domain so that the suction can take place at the louver entry. The resulting equations have been solved numerically using finite volume technique in an unstructured grid employing eddy viscosity based two-equation k-e turbulence model of Fluent 6.3. It has been found from the experiment and the CFD computation that there exists an optimum funnel diameter for which the mass ingress into the funnel is highest, and also there exists an optimum protrusion length of the nozzle that entrains maximum air flow into the funnel. For isothermal air suction the mass ingress into the funnel does not depend on the inclination of the funnel, whereas for low velocity and high temperature of the nozzle fluid the mass ingress in to the funnel depends on the inclination of the funnel. After a critical nozzle velocity (Gr/Re2 < 0.5), the mass ingress into the funnel does not again depend on the inclination of the funnel. An approximate relation for the entrance length of a sucking pipe has also been developed from the present CFD solution. The original contribution of the paper is the setting of a computational methodology for computing various conditions of suction flow in to a funnel while having the numerical confidence by comparing the CFD result with a small-scale experimental measurement in the laboratory.


Holzforschung ◽  
2016 ◽  
Vol 70 (6) ◽  
pp. 495-501 ◽  
Author(s):  
Binh T.T. Dang ◽  
Harald Brelid ◽  
Hans Theliander

Abstract The molecular weight distribution (MWD) of dissolved lignin as a function of time during kraft cooking of Scots pine (Pinus silvestris L) has been investigated, while the influence of sodium ion concentration ([Na+]) on the MWD was in focus. The kraft cooking was performed in a small scale flow-through reactor and the [Na+] was controlled by the addition of either Na2CO3 or NaCl. Fractions of black liquors (BL) were collected at different cooking times and the lignin was separated from the BL by acidification. The MWD of the dissolved lignin was analyzed by GPC. Results show that the weight average molecular weight (Mw) of dissolved lignin increases gradually as function of cooking time. An increase of [Na+] in the cooking liquor leads to Mw decrement. Findings from cooks with constant and varying [Na+] imply that the retarding effect of an increased [Na+] on delignification is related to the decrease in lignin solubility at higher [Na+].


Author(s):  
A. C. Verkaik ◽  
A. C. B. Bogaerds ◽  
F. Storti ◽  
F. N. van de Vosse

When blood is pumped through the aortic valves, it has a time dependent flow with a relatively high speed, resulting in Reynolds numbers between 1500 and 3000. Hence, flow is in the transitional regime between laminar and turbulent flow. Transitional flow contains small scale fluctuations, see Figure 1, and may result in local high deformation rates.


RSC Advances ◽  
2019 ◽  
Vol 9 (62) ◽  
pp. 36144-36153 ◽  
Author(s):  
Bin Zheng ◽  
Yizi Ye ◽  
Baowei Hu ◽  
Chunhui Luo ◽  
Yuling Zhu

To effectively destroy the structure of the passive oxidation film covering zero-valent iron (ZVI), an Fe(iii)-reducing strain, Morganella sp., was isolated from anaerobic activated sludge and coated on the ZVI.


1978 ◽  
Vol 192 (1) ◽  
pp. 213-223 ◽  
Author(s):  
A. D. Gosman ◽  
A. Melling ◽  
J. H. Whitelaw ◽  
P. Watkins

A study was made of axisymmetric, laminar and turbulent flow in a motored reciprocating engine with flow through a cylinder head port. Measurements were obtained by laser-Doppler anemometry and predictions for the laminar case were generated by finite-difference means. Agreement between calculated and measured results is good for the main features of the flow field, but significant small scale differences exist, due partly to uncertainties in the inlet velocity distribution. The measurements show, for example, that the mean velocity field is influenced more strongly by the engine geometry than by the speed. In general, the results confirm that the calculation method can be used to represent the flow characteristics of motored reciprocating engines without compression and suggest that extensions to include compression and combustion are within reach.


Sign in / Sign up

Export Citation Format

Share Document