Glacier change and glacier runoff variation in the Himalayan Baspa river basin

2021 ◽  
Vol 593 ◽  
pp. 125918
Author(s):  
Vishal Singh ◽  
Sanjay Kumar Jain ◽  
Sandeep Shukla
2010 ◽  
Vol 53 (6) ◽  
pp. 880-891 ◽  
Author(s):  
Xin Gao ◽  
BaiSheng Ye ◽  
ShiQiang Zhang ◽  
ChengJun Qiao ◽  
XiaoWen Zhang

2021 ◽  
Author(s):  
Fabien Maussion ◽  
Quentin Lejeune ◽  
Ben Marzeion ◽  
Matthias Mengel ◽  
David Rounce ◽  
...  

<p>Mountain glaciers have a delayed response to climate change and are expected to continue to melt long after greenhouse gas emissions have stopped, with consequences both for sea-level rise and water resources. In this contribution, we use the Open Global Glacier Model (OGGM) to compute global glacier volume and runoff changes until the year 2300 under a suite of stylized greenhouse gas emission characterized by (i) the year at which anthropogenic emissions culminate, (ii) their reduction rates after peak emissions and (iii) whether they lead to a long-term global temperature stabilization or decline. We show that even under scenarios that achieve the Paris Agreement goal of holding global-mean temperature below 2 °C, glacier contribution to sea-level rise will continue well beyond 2100. Because of this delayed response, the year of peak emissions (i.e. the timing of mitigation action) has a stronger influence on mit-term global glacier change than other emission scenario characteristics, while long-term change is dependent on all factors. We also discuss the impact of early climate mitigation on regional glacier change and the consequences for glacier runoff, both short-term (where some basins are expected to experience an increase of glacier runoff) and long-term (where all regions are expecting a net-zero or even negative glacier contribution to total runoff), underlining the importance of mountain glaciers for regional water availability at all timescales.</p>


2020 ◽  
Vol 14 (6) ◽  
pp. 2005-2027 ◽  
Author(s):  
Álvaro Ayala ◽  
David Farías-Barahona ◽  
Matthias Huss ◽  
Francesca Pellicciotti ◽  
James McPhee ◽  
...  

Abstract. As glaciers adjust their size in response to climate variations, long-term changes in meltwater production can be expected, affecting the local availability of water resources. We investigate glacier runoff in the period 1955–2016 in the Maipo River basin (4843 km2, 33.0–34.3∘ S, 69.8–70.5∘ W), in the semiarid Andes of Chile. The basin contains more than 800 glaciers, which cover 378 km2 in total (inventoried in 2000). We model the mass balance and runoff contribution of 26 glaciers with the physically oriented and fully distributed TOPKAPI (Topographic Kinematic Approximation and Integration)-ETH glacio-hydrological model and extrapolate the results to the entire basin. TOPKAPI-ETH is run at a daily time step using several glaciological and meteorological datasets, and its results are evaluated against streamflow records, remotely sensed snow cover, and geodetic mass balances for the periods 1955–2000 and 2000–2013. Results show that in 1955–2016 glacier mass balance had a general decreasing trend as a basin average but also had differences between the main sub-catchments. Glacier volume decreased by one-fifth (from 18.6±4.5 to 14.9±2.9 km3). Runoff from the initially glacierized areas was 177±25 mm yr−1 (16±7 % of the total contributions to the basin), but it shows a decreasing sequence of maxima, which can be linked to the interplay between a decrease in precipitation since the 1980s and the reduction of ice melt. Glaciers in the Maipo River basin will continue retreating because they are not in equilibrium with the current climate. In a hypothetical constant climate scenario, glacier volume would reduce to 81±38 % of the year 2000 volume, and glacier runoff would be 78±30 % of the 1955–2016 average. This would considerably decrease the drought mitigation capacity of the basin.


Water ◽  
2017 ◽  
Vol 9 (3) ◽  
pp. 159 ◽  
Author(s):  
Zhenliang Yin ◽  
Qi Feng ◽  
Shiyin Liu ◽  
Songbing Zou ◽  
Jing Li ◽  
...  

2015 ◽  
Vol 3 ◽  
Author(s):  
Michele Koppes ◽  
Summer Rupper ◽  
Maria Asay ◽  
Alexandra Winter-Billington

2021 ◽  
Author(s):  
Xuejing Leng ◽  
Xiaoming Feng ◽  
Bojie Fu ◽  
Yu Zhang

Abstract. Glaciers continuously affected by climate change are of great concern; their supply and runoff variation tendency under the pressure of increasing populations, especially in dryland areas, should be studied. Due to the difficulty of observing glacier runoff, little attention has been given to establishing high-resolution and long-term series datasets established for glacial runoff. Using the latest dataset using digital elevation models (DEMs) to obtain regional individual glacier mass balance, simulating the spatiotemporal regime of glacier runoff in oases that support almost the entire income in the dryland areas of China (DAC) could be possible. The simulations quantitatively assess glacier runoff, including meltwater runoff and delayed runoff, in each basin of the DAC at a spatial resolution of 100 m from 1961 to 2015, classify glaciers according to the potential climatic risks based on the prediction results. The total glacier runoff in the DAC is (98.52 ± 67.37) × 108 m3, in which the meltwater runoff is (63.43 ± 42.17) × 108 m3, accounting for 64.38 %. Most basins had continuously increasing tendencies of different magnitudes from 1961 to 2015, except for the Shiyang River basin, which reached its peak in approximately 2000. Glacier runoff nurtured nearly 143,939.24 km2 of oasis agricultural areas (OAA) until 2015, while 19 regions with a total population of 14 million were built alongside the oases, where glacier runoff occupies an important place in agricultural, industrial and municipal water consumption. Therefore, providing a long time series of glacier runoff for different river basins is of great significance to the sustainable development of the oasis economy in the arid zones.


2022 ◽  
Vol 9 ◽  
Author(s):  
Tomas Saks ◽  
Eric Pohl ◽  
Horst Machguth ◽  
Amaury Dehecq ◽  
Martina Barandun ◽  
...  

Water resources in Central Asia strongly depend on glaciers, which in turn adjust their size in response to climate variations. We investigate glacier runoff in the period 1981–2019 in the upper Naryn basin, Kyrgyzstan. The basins contain more than 1,000 glaciers, which cover a total area of 776 km2. We model the mass balance and runoff contribution of all glaciers with a simplified energy balance melt model and distributed accumulation model driven by ERA5 LAND re-analysis data for the time period of 1981–2019. The results are evaluated against discharge records, satellite-derived snow cover, stake readings from individual glaciers, and geodetic mass balances. Modelled glacier volume decreased by approximately 6.7 km3 or 14%, and the majority of the mass loss took place from 1996 until 2019. The decreasing trend is the result of increasingly negative summer mass balances whereas winter mass balances show no substantial trend. Analysis of the discharge data suggests an increasing runoff for the past two decades, which is, however only partly reflected in an increase of glacier melt. Moreover, the strongest increase in discharge is observed in winter, suggesting either a prolonged melting period and/or increased groundwater discharge. The average runoff from the glacierized areas in summer months (June to August) constitutes approximately 23% of the total contributions to the basin’s runoff. The results highlight the strong regional variability in glacier-climate interactions in Central Asia.


Sign in / Sign up

Export Citation Format

Share Document