An efficient, recyclable and large-scalable fiber-supported Fe(III) catalytic system on a simple fixed-bed reactor verified in the Biginelli reactions

2018 ◽  
Vol 60 ◽  
pp. 333-340 ◽  
Author(s):  
Xian-Lei Shi ◽  
Yongju Chen ◽  
Qianqian Hu ◽  
Feng Wang ◽  
Peigao Duan
2015 ◽  
Vol 5 (1) ◽  
pp. 142-149 ◽  
Author(s):  
Christof Aellig ◽  
David Scholz ◽  
Pierre Y. Dapsens ◽  
Cecilia Mondelli ◽  
Javier Pérez-Ramírez

A highly intensified process for the selective conversion of hemicellulose to furfural is demonstrated which integrates a bifunctional catalytic system into a biphasic fixed-bed reactor operating in continuous mode.


Catalysts ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1250
Author(s):  
Macarena Munoz ◽  
David Ortiz ◽  
Julia Nieto-Sandoval ◽  
Samuel Cirés ◽  
Zahara M. de Pedro ◽  
...  

The development of cost-efficient and environmentally friendly technologies for the removal of cyanotoxins from water is crucial, given the increasingly frequent appearance of toxic cyanobacterial blooms. In this work, the application of catalytic wet peroxide oxidation (CWPO) promoted by natural magnetite for the removal of the highly toxic cyanotoxin cylindrospermopsin (CYN) has been investigated. A fixed-bed reactor packed with magnetite powder and granules was used to treat a continuous flow of CYN-bearing water. Experiments were carried out under ambient conditions and circumneutral pH (pH0 = 5). The effect of the main variables of the process, viz. magnetite load (8–14 g), feed flow rate (0.1–0.25 mL min−1), H2O2 dose (0.5–8 mg L−1) and initial CYN concentration (25–100 μg L−1), were systematically analyzed. CYN conversion values and kinetic constants were calculated to evaluate the feasibility of the catalytic system. The process was highly effective in the removal of the cyanotoxin, achieving up to 80% CYN conversion under optimized conditions (flow rate = 0.2 mL min−1, [H2O2]0 = 5 mg L−1, WFe3O4 = 14 g, pH0 = 5, T = 25 °C). It also showed reasonable activity (~55% CYN conversion) in two real samples (pond and river water). The decay on CYN conversion in these cases was mainly due to the scavenging of hydroxyl radicals by the co-existing species present in the matrices. Remarkably, the catalytic system showed high stability with limited iron leaching (the iron leached at the end of the experiments represented less than 0.2 wt.% of the catalyst’s initial iron content) in all cases. Its stability was further confirmed in a long-term continuous experiment (60 h time on stream). Furthermore, the magnetite granules at the top layer of the packed bed avoided the loss of magnetite powder from the reactor, confirming the suitability of the system for continuous long-term application.


2012 ◽  
Vol 66 (4) ◽  
Author(s):  
Jia-Min Huang ◽  
Lu-Feng Xu ◽  
Chao Qian ◽  
Xin-Zhi Chen

AbstractA simple method for N-alkylation of 1,2-diaminoethane with different alcohols in a fixed-bed reactor using cheap CuO-NiO/γ-Al2O3 as the catalyst has been developed. The present catalytic system was applicable in the N-alkylation of 1,2-diaminoethane with both primary and secondary alcohols. Mono-N-alkylation of 1,2-diaminoethane with low-carbon alcohols resulted in high yields; the yields of tetra-N-alkylation of 1,2-diaminoethane with low-carbon alcohols declined markedly with the increase of the molecular volume of alcohols.


1995 ◽  
Vol 31 (9) ◽  
pp. 137-144 ◽  
Author(s):  
T. Miyahara ◽  
M. Takano ◽  
T. Noike

The relationship between the filter media and the behaviour of anaerobic bacteria was studied using anaerobic fixed-bed reactors. At an HRT of 48 hours, the number of suspended acidogenic bacteria was higher than those attached to the filter media. On the other hand, the number of attached methanogenic bacteria was more than ten times as higher than that of suspended ones. The numbers of suspended and deposited acidogenic and methanogenic bacteria in the reactor operated at an HRT of 3 hours were almost the same as those in the reactor operated at an HRT of 48 hours. Accumulation of attached bacteria was promoted by decreasing the HRT of the reactor. The number of acidogenic bacteria in the reactor packed sparsely with the filter media was higher than that in the closely packed reactor. The number of methanogenic bacteria in the sparsely packed reactor was lower than that in the closely packed reactor.


1999 ◽  
Vol 39 (4) ◽  
pp. 85-92 ◽  
Author(s):  
J. Behrendt

A mathematical model for nitrification in an aerated fixed bed reactor has been developed. This model is based on material balances in the bulk liquid, gas phase and in the biofilm area. The fixed bed is divided into a number of cells according to the reduced remixing behaviour. A fixed bed cell consists of 4 compartments: the support, the gas phase, the bulk liquid phase and the stagnant volume containing the biofilm. In the stagnant volume the biological transmutation of the ammonia is located. The transport phenomena are modelled with mass transfer formulations so that the balances could be formulated as an initial value problem. The results of the simulation and experiments are compared.


1985 ◽  
Vol 50 (10) ◽  
pp. 2122-2133 ◽  
Author(s):  
Jindřich Zahradník ◽  
Marie Fialová ◽  
Jan Škoda ◽  
Helena Škodová

An experimental study was carried out aimed at establishing a data base for an optimum design of a continuous flow fixed-bed reactor for biotransformation of ammonium fumarate to L-aspartic acid catalyzed by immobilized cells of the strain Escherichia alcalescens dispar group. The experimental program included studies of the effect of reactor geometry, catalytic particle size, and packed bed arrangement on reactor hydrodynamics and on the rate of substrate conversion. An expression for the effective reaction rate was derived including the effect of mass transfer and conditions of the safe conversion-data scale-up were defined. Suggestions for the design of a pilot plant reactor (100 t/year) were formulated and decisive design parameters of such reactor were estimated for several variants of problem formulation.


Sign in / Sign up

Export Citation Format

Share Document