scholarly journals Dynamic softening mechanisms and Zener-Hollomon parameter of Al-Mg-Si-Ce-B alloy during hot deformation

Author(s):  
Yi Yu ◽  
Qinglin Pan ◽  
Weiyi Wang ◽  
Zhiqi Huang ◽  
Shengqian Xiang ◽  
...  
Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 36
Author(s):  
Munir Al-Saadi ◽  
Wangzhong Mu ◽  
Christopher N. Hulme-Smith ◽  
Fredrik Sandberg ◽  
Pär G. Jönsson

Alloy 825 is widely used in several industries, but its useful service life is limited by both mechanical properties and corrosion resistance. The current work explores the effect of the addition of magnesium on the recrystallization and mechanical behavior of alloy 825 under hot compression. Compression tests were performed under conditions representative of typical forming processes: temperatures between 1100 and 1250 °C and at strain rates of 0.1–10 s−1 to a true strain of 0.7. Microstructural evolution was characterized by electron backscattered diffraction. Dynamic recrystallization was found to be more prevalent under all test conditions in samples containing magnesium, but not in all cases of conventional alloy 825. The texture direction ⟨101⟩ was the dominant orientation parallel to the longitudinal direction of casting (also the direction in which the samples were compressed) in samples that contained magnesium under all test conditions, but not in any sample that did not contain magnesium. For all deformation conditions, the peak stress was approximately 10% lower in material with the addition of magnesium. Furthermore, the differences in the peak strain between different temperatures are approximately 85% smaller if magnesium is present. The average activation energy for hot deformation was calculated to be 430 kJ mol−1 with the addition of magnesium and 450 kJ mol−1 without magnesium. The average size of dynamically recrystallized grains in both alloys showed a power law relation with the Zener–Hollomon parameter, DD~Z−n, and the exponent of value, n, is found to be 0.12. These results can be used to design optimized compositions and thermomechanical treatments of alloy 825 to maximize the useful service life under current service conditions. No experiments were conducted to investigate the effects of such changes on the service life and such experiments should now be performed.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Xiaoguo Wang ◽  
Jian Qin ◽  
Hiromi Nagaumi ◽  
Ruirui Wu ◽  
Qiushu Li

The hot deformation behaviors of homogenized direct-chill (DC) casting 6061 aluminum alloys and Mn/Cr-containing aluminum alloys denoted as WQ1 were studied systematically by uniaxial compression tests at various deformation temperatures and strain rates. Hot deformation behavior of WQ1 alloy was remarkably changed compared to that of 6061 alloy with the presence of α-Al(MnCr)Si dispersoids. The hyperbolic-sine constitutive equation was employed to determine the materials constants and activation energies of both studied alloys. The evolution of the activation energies of two alloys was investigated on a revised Sellars’ constitutive equation. The processing maps and activation energy maps of both alloys were also constructed to reveal deformation stable domains and optimize deformation parameters, respectively. Under the influence of α dispersoids, WQ1 alloy presented a higher activation energy, around 40 kJ/mol greater than 6061 alloy’s at the same deformation conditions. Dynamic recrystallization (DRX) is main dynamic softening mechanism in safe processing domain of 6061 alloy, while dynamic recovery (DRV) was main dynamic softening mechanism in WQ1 alloy due to pinning effect of α-Al(MnCr)Si dispersoids. α dispersoids can not only resist DRX but also increase power required for deformation of WQ1 alloy. The microstructure analysis revealed that the flow instability was attributed to the void formation and intermetallic cracking during hot deformation of both alloys.


2015 ◽  
Vol 1089 ◽  
pp. 37-41
Author(s):  
Jiang Wang ◽  
Sheng Li Guo ◽  
Sheng Pu Liu ◽  
Cheng Liu ◽  
Qi Fei Zheng

The hot deformation behavior of SiC/6168Al composite was studied by means of hot compression tests in the temperature range of 300-450 °C and strain rate range of 0.01-10 s-1. The constitutive model was developed to predict the stress-strain curves of this composite during hot deformation. This model was established by considering the effect of the strain on material constants calculated by using the Zenter-Hollomon parameter in the hyperbolic Arrhenius-type equation. It was found that the relationship of n, α, Q, lnA and ε could be expressed by a five-order polynomial. The stress-strain curves obtained by this model showed a good agreement with experimental results. The proposed model can accurately describe the hot flow behavior of SiC/6168Al composite, and can be used to numerically analyze the hot forming processes.


2016 ◽  
Vol 35 (6) ◽  
pp. 599-605 ◽  
Author(s):  
Fuqiang Zhen ◽  
Jianlin Sun ◽  
Jian Li

AbstractThe flow behavior of 3104 aluminum alloy was investigated at temperatures ranging from 250°C to 500°C, and strain rates from 0.01 to 10 s−1 by isothermal compression tests. The true stress–strain curves were obtained from the measured load–stroke data and then modified by friction and temperature correction. The effects of temperature and strain rate on hot deformation behavior were represented by Zener–Hollomon parameter including Arrhenius term. Additionally, the influence of strain was incorporated considering the effect of strain on material constants. The derived constitution equation was applied to the finite element analysis of hot compression. The results show that the simulated force is consistent with the measured one. Consequently, the developed constitution equation is valid and feasible for numerical simulation in hot deformation process of 3104 alloy.


2010 ◽  
Vol 61 (1) ◽  
pp. 25-30 ◽  
Author(s):  
Zhenhua Wang ◽  
Wantang Fu ◽  
Baozhong Wang ◽  
Wenhui Zhang ◽  
Zhiqing Lv ◽  
...  

2018 ◽  
Vol 920 ◽  
pp. 244-249 ◽  
Author(s):  
Yaroslav Erisov ◽  
Sergey Surudin ◽  
Fedor Grechnikov

The results of physical simulation of hot compression of semi-finished products, selected from a cast ingot and hot-rolled plate from aluminum-lithium alloy V-1461, in the temperature range of 400-460°C and strain rates of 1-60 s-1are presented. It is established that at a constant strain rate the flow stresses decrease with increasing test temperature, an increase in the strain rate leads to an increase in flow stresses at a constant temperature. The parameters of the hot deformation rheological model, including the Zener-Hollomon parameter and the hyperbolic sine law, are determined. It is established that the parameters of the rheological model for the cast and hot-rolled state differ insignificantly.


Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 22
Author(s):  
Weiqi Kang ◽  
Yi Yang ◽  
Sheng Cao ◽  
Lei Li ◽  
Shewei Xin ◽  
...  

The hot deformation behavior of a new Al–Mn–Sc alloy was investigated by hot compression conducted at temperatures from 330 to 490 °C and strain rates from 0.01 to 10 s−1. The hot deformation behavior and microstructure of the alloy were significantly affected by the deformation temperatures and strain rates. The peak flow stress decreased with increasing deformation temperatures and decreasing strain rates. According to the hot deformation behavior, the constitutive equation was established to describe the steady flow stress, and a hot processing map at 0.4 strain was obtained based on the dynamic material model and the Prasad instability standard, which can be used to evaluate the hot workability of the alloy. The developed hot processing diagram showed that the instability was more likely to occur in the higher Zener–Hollomon parameter region, and the optimal processing range was determined as 420–475 °C and 0.01–0.022 s−1, in which a stable flow and a higher power dissipation were achieved.


2020 ◽  
Vol 9 (3) ◽  
pp. 6632-6641
Author(s):  
Yang He ◽  
Zhenqiang Deng ◽  
Jianhua Liu ◽  
Baijun Yan ◽  
Chunlin Chen

Sign in / Sign up

Export Citation Format

Share Document