Gas generation from Jurassic coal measures at low mature stage and potential gas accumulation in the eastern Junggar Basin, China

2020 ◽  
Vol 84 ◽  
pp. 103692
Author(s):  
Chenjun Wu ◽  
Mingfeng Zhang ◽  
Deming Xiong ◽  
Jincai Tuo ◽  
Wanyun Ma ◽  
...  
2021 ◽  
Vol 9 ◽  
Author(s):  
Jianping Chen ◽  
Xulong Wang ◽  
Yongge Sun ◽  
Yunyan Ni ◽  
Baoli Xiang ◽  
...  

In this paper, factors controlling natural gas accumulation in the southern margin of Junggar Basin were mainly discussed by a comparison with natural gas generation and accumulation in the Kuqa Depression of Tarim Basin. The southern margin of Junggar Basin and the Kuqa Depression of Tarim Basin are located on the north and south sides of the Tianshan Mountains respectively, and they share the similar sedimentary stratigraphy and tectonic evolution history. In recent several decades, many large gas fields have been found in the Kuqa Depression of Tarim Basin, but no great breakthrough in the southern margin of Junggar Basin. Our results suggest that natural gas in the southern margin of Junggar Basin is mainly thermogenic wet gas, and can be divided into three types as coal-derived gas, mixed gas and oil-associated gas, of which the former two types are dominated. The Jurassic coal measures are the main source rocks of natural gas, and the main gas generation time from this set of source rocks matched well with the formation time of the anticline structures, resulting in favorable conditions for natural gas accumulation. In the western part of the southern margin in the Junggar Basin, the Permian lacustrine and the Upper Triassic lacustrine-swamp source rocks could be important sources of natural gas, and the main gas generation time also matched well with the formation time of traps. Compared with the Kuqa Depression of Tarim Basin, natural gas sources are better in the southern margin of Junggar Basin, and the geologic conditions are favorable for the formation of large oil and gas fields in the southern margin of Junggar Basin. The deep Permian-Jurassic-Cretaceous petroleum system is the most favorable petroleum system for natural gas exploration in the southern margin of Junggar Basin. The western part and the central part of the southern margin in the Junggar Basin could be the first targets for the discovery of the Jurassic coal-derived oil and gas reservoirs. The shallow Cretaceous-Neogene petroleum system is the second target for natural gas exploration.


2016 ◽  
Vol 90 (6) ◽  
pp. 2117-2132 ◽  
Author(s):  
Yangquan JIAO ◽  
Liqun WU ◽  
Hui RONG ◽  
Yunbiao PENG ◽  
Aisheng MIAO ◽  
...  

2013 ◽  
Vol 295-298 ◽  
pp. 2770-2773 ◽  
Author(s):  
Dai Yong Cao ◽  
Jing Li ◽  
Ying Chun Wei ◽  
Xiao Yu Zhang ◽  
Chong Jing Wang

Besides coal seam, the source rocks including dark mudstone, carbon mudstone and so on account for a large proportion in the coal measures. Based on the complex geothermal evolution history, the majority of coal measure organic matters with the peak of gas generation have a good potential of gas. Therefore, shale gas in coal measure is an important part of the shale gas resources. There are good conditions including the thickness of coal measures, high proportion of shale rocks, rich in organic matter content, high degree of thermal evolution, high content of brittle mineral and good conditions of the porosity and permeability for the generation of shale gas in Wuli area, the south of Qinghai province. Also the direct evidence of the gas production has been obtained from the borehole. The evaluation of shale gas in coal measure resources could broaden the understanding of the shale gas resources and promote the comprehensive development of the coal resources.


1989 ◽  
Vol 29 (1) ◽  
pp. 366 ◽  
Author(s):  
R. Heath

The Cooper Basin is located in the northeastern corner of South Australia and in the southwestern part of Queensland. The basin constitutes an intracratonic depocentre of Permo- Triassic age. The Cooper Basin succession unconformably overlies Proterozoic basement as well as sediments and metasediments of the Cambro- Ordovician age. An unconformity separates in turn the Cooper succession from the overlying Jurassic- Cretaceous Eromanga Basin sediments.The Permo- Triassic succession comprises several cycles of fluvial sandstones, fluvio- deltaic coal measures and lacustrine shales. The coal measures contain abundant humic kerogen, comprising mainly inertinite and vitrinite with a small contribution of exinite. All hydrocarbon accumulations within the Cooper Basin are believed to have originated from these terrestrial source rocks.Exploration of the basin commenced in 1959 and, after several dry holes, the first commercial discovery of gas was made at Gidgealpa in 1963. To date, some 97 gas fields and 10 oil fields, containing recoverable reserves of 5 trillion cubic feet of gas and 300 million barrels recoverable natural gas liquids and oil, have been discovered in the Cooper Basin. Production is obtained from all sand- bearing units within the Cooper stratigraphic succession.The emphasis of exploration in the Cooper Basin is largely directed towards the assessment of four- way dip closures and three- way dip closures with fault control, but several stratigraphic prospects have been drilled. Furthermore, in the development phase of some gas fields a stratigraphic component of the hydrocarbon trapping mechanism has been recognised.Improvements in seismic acquisition and processing, combined with innovative thinking by the explorers, have facilitated the development of untested structural/stratigraphic plays with large reserves potential. Exploration for the four- and three- way dip closure plays in the Cooper Basin is now at a mature stage. However, reserves objectives are expected to continue to be met, with the expectation of a continuing high success rate.Selected new plays are expected to be tested within a continuing active exploration program as exploration for oil and gas in the Cooper Basin refines the search for the subtle trap.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Qigen Deng ◽  
Tao Zhang ◽  
Fajun Zhao ◽  
Hao Wang ◽  
Jingping Yin

The salinity, chemical properties, and migration characteristics of groundwater in coal measures are the key factors that affect the generation, migration, and reservoir of hydrogen sulfide (H2S) in low-rank coal seams. Taking the Jurassic coal and rock strata in the southeastern margin of the Junggar basin as the research object, according to the hydrogeological characteristics of the coal measures, the region is divided into 4 hydrogeological units. The coalbed methane contains a large number of secondary biogas. Along the direction of groundwater runoff, the salinity and the pH value increase gradually. The salinity in the hydrogeological units is low; it is not conducive to the propagation of sulfate-reducing bacteria and the formation of hydrogen sulfide of the Houxia, the south of Manasi River, and Hutubi and Liuhuangou area, the western region of the Miquan. The high salinity center and depressions of low water level (hydrodynamic stagnation zone) in the hydrogeological unit of the Liuhuanggou and the Miquan are the main areas for the production and enrichment of H2S in the low-rank coal. The high salinity in water is formed by infiltration, runoff, and drought evaporation. At the same time, the deep confined water environment closed well; in conditions of hydrocarbon-rich, under the action of sulfate-reducing bacteria, bacterial sulfate reduction will occur and hydrogen sulfide formed. According to the circulation characteristics of water bearing H2S in the region, imbricate and single bevel two kind generation and enrichment mode of hydrogen sulfide under the action of hydrodynamic control. The solubility of hydrogen sulfide in pure water and solutions of NaCl and Na2SO4 with different molar concentrations was calculated. The H2S solubility of groundwater in coal measures of 4 hydrogeological units was estimated.


2013 ◽  
Vol 295-298 ◽  
pp. 2736-2739
Author(s):  
Hai Yan Hu

Overpressure is often encountered in the Jurassic tight and the overpressure is closely associated with gas generation. The pressure transfer from the over-pressurized mudstones to adjacent tight sandstones might occur through overpressure induced-fractures. The fine-grained coal containing Jurassic sandstone is sensitive to compaction, and the porosity decreases dramatically with the increase of overlying load. As gas migrates into the tight sandstones, it must overcome the capillary pressure which is greater than the hydrostatic pressure. The gas charging pressure in the tight sandstone must be higher than the capillary pressure, resulting in an overpressure buildup within the tight sandstones. Gas shows, low permeability and strong diagenesis in the overpressure of the tight sandstone system have been observed. Additionally, capillary seals are identified as playing an important role in the mechanism of the overpressure formation in tight sandstone reservoirs. Overpressure might be a driving force to create induced fractures in the interval, which has applications for crossing-formation migration and gas accumulation.


AAPG Bulletin ◽  
2003 ◽  
Vol 87 (2) ◽  
pp. 335-355 ◽  
Author(s):  
Longyi Shao ◽  
Pengfei Zhang ◽  
Jason Hilton ◽  
Rod Gayer ◽  
Yanbin Wang ◽  
...  

2009 ◽  
Vol 49 (1) ◽  
pp. 383 ◽  
Author(s):  
Chris Uruski

The offshore Northland Basin is a major sedimentary accumulation lying to the west of the Northland Peninsula of New Zealand. It merges with the Taranaki Basin in the south and its deeper units are separated from Deepwater Taranaki by a buried extension of the West Norfolk Ridge. Sedimentary thicknesses increase to the northwest and the Northland Basin may extend into Reinga. Its total area is at least 65,000 km2 and if the Reinga Basin is included, it may be up to 100,000 km2. As in Taranaki, petroleum systems of the Northland Basin were thought to include Cretaceous to Recent sedimentary rocks. Waka Nui–1 was drilled in 1999 and penetrated no Cretaceous sediments, but instead drilled unmetamorphosed Middle Jurassic coal measures. Economic basement may be older meta-sediments of the Murihiku Supergroup. Thick successions onlap the dipping Jurassic unit and a representative Cretaceous succession is likely to be present in the basin. Potential source rocks known to be present include the Middle Jurassic coal measures of Waka Nui–1 and the Waipawa Formation black shale. Inferred source rocks include Late Jurassic coaly rocks of the Huriwai Beds, the Early Cretaceous Taniwha Formation coaly sediments, possible Late Cretaceous coaly units and lean but thick Late Cretaceous and Paleogene marine shales. Below the voluminous Miocene volcanoes of the Northland arc, the eastern margin of the basin is dominated by a sedimentary wedge that thickens to more than two seconds two-way travel time (TWT), or at least 3,000 m, at its eastern margin and appears to have been thrust to the southwest. This is interpreted to be a Mesozoic equivalent of the Taranaki Fault, a back-thrust to subduction along the Gondwana Margin. The ages of sedimentary units in the wedge are unknown but are thought to include a basal Jurassic succession, which dips generally to the east and is truncated by an erosional unconformity. A southwestwards-prograding succession overlies the unconformity and its top surface forms a paleoslope onlapped by sediments of Late Cretaceous to Neogene ages. The upper succession in the wedge may be of Early Cretaceous age—perhaps the equivalent of the Taniwha Formation or the basal succession in Waimamaku–2. The main part of the basin was rifted to form a series of horst and graben features. The age of initial rifting is poorly constrained, but the structural trend is northwest–southeast or parallel to the Early Cretaceous rifting of Deepwater Taranaki and with the Mesozoic Gondwana margin. Thick successions overlie source units which are likely to be buried deeply enough to expel oil and gas, and more than 70 slicks have been identified on satellite SAR data suggesting an active petroleum system. Numerous structural and stratigraphic traps are present and the potential of the Northland Basin is thought to be high.


Sign in / Sign up

Export Citation Format

Share Document