scholarly journals Effect of enzymatic treatment (endo-glucanases) of fiber and mechanical lignocellulose nanofibers addition on physical and mechanical properties of binderless high-density fiberboards made from wheat straw

2021 ◽  
pp. 103392
Author(s):  
Eduardo Espinosa ◽  
Quim Tarrés ◽  
Dyna Theng ◽  
Marc Delgado-Aguilar ◽  
Alejandro Rodríguez ◽  
...  
Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 220
Author(s):  
Petar Antov ◽  
Viktor Savov ◽  
Ľuboš Krišťák ◽  
Roman Réh ◽  
George I. Mantanis

The potential of producing eco-friendly, formaldehyde-free, high-density fiberboard (HDF) panels from hardwood fibers bonded with urea-formaldehyde (UF) resin and a novel ammonium lignosulfonate (ALS) is investigated in this paper. HDF panels were fabricated in the laboratory by applying a very low UF gluing factor (3%) and ALS content varying from 6% to 10% (based on the dry fibers). The physical and mechanical properties of the fiberboards, such as water absorption (WA), thickness swelling (TS), modulus of elasticity (MOE), bending strength (MOR), internal bond strength (IB), as well as formaldehyde content, were determined in accordance with the corresponding European standards. Overall, the HDF panels exhibited very satisfactory physical and mechanical properties, fully complying with the standard requirements of HDF for use in load-bearing applications in humid conditions. Markedly, the formaldehyde content of the laboratory fabricated panels was extremely low, ranging between 0.7–1.0 mg/100 g, which is, in fact, equivalent to the formaldehyde release of natural wood.


Author(s):  
V. I. Khirkhasova ◽  

The paper deals with modification of cement composite and concrete with nanocellulose in low and high density. The author presents the study results of the influence of nanocellulose on the cement composite hardening process, as well as the physical and mechanical properties of heavy concrete. The influence of the used additive on the rheological and strength characteristics of concrete is revealed. A new method is proposed to improve the material performance.


2021 ◽  
Vol 14 ◽  
Author(s):  
Menandro N. Acda

Background: High-density fiberboards (HDF) are widely used as a substitute for solid wood in furniture, cabinet, construction materials, etc. Wood fibers are often used in the production of HDF but the use of renewable materials has gained worldwide interest brought about by global pressure to pursue sustainable development. An abundant source of renewable fibers that can be used to produce HDF is keratin from waste chicken feathers. The goal of the study is to investigate the use of keratin fibers in combination with wood fibers to produce HDF. No or limited studies have been conducted in this area and if successful, it could offer an alternative utilization for the billions of kilograms of waste feather produced by the poultry industry. HDF is a high volume feather utilization that can reduce pollution and help solve solid waste disposal problems in many countries. Methods: A series of dry-formed HDFs containing varying ratios of wood and keratin fibers bonded by polyurethane resin were produced. The physical and mechanical properties of the HDFs were determined. Results : The properties of the HDFs were affected by varying ratios of wood particles and keratin fibers. Dimensional stability as indicated by low levels of thickness swelling (<4.6%) and water absorption (<10%) was observed. Internal bond (2.47 MPa), MOE (5.8 GPa) and MOR (45 MPa) values were higher or comparable to those reported in the literature. Conclusion: HDF formed using a combination of wood and keratin fibers bonded together by polyurethane resin to as much as 50% keratin fibers were dimensionally stable with stiffness and strength above the minimum requirements for general use HDF as prescribed by EN 622-5.


Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1166 ◽  
Author(s):  
Pavlo Bekhta ◽  
Ján Sedliačik

Thermoplastic films exhibit good potential to be used as adhesives for the production of veneer-based composites. This work presents the first effort to develop and evaluate composites based on alder veneers and high-density polyethylene (HDPE) film. The effects of hot-pressing temperature (140, 160, and 180 °C), hot-pressing pressure (0.8, 1.2, and 1.6 MPa), hot-pressing time (1, 2, 3, and 5 min), and type of adhesives on the physical and mechanical properties of alder plywood panels were investigated. The effects of these variables on the core-layer temperature during the hot pressing of multiplywood panels using various adhesives were also studied. Three types of adhesives were used: urea–formaldehyde (UF), phenol–formaldehyde (PF), and HDPE film. UF and PF adhesives were used for the comparison. The findings of this work indicate that formaldehyde-free HDPE film adhesive gave values of mechanical properties of alder plywood panels that are comparable to those obtained with traditional UF and PF adhesives, even though the adhesive dosage and pressing pressure were lower than when UF and PF adhesives were used. The obtained bonding strength values of HDPE-bonded alder plywood panels ranged from 0.74 to 2.38 MPa and met the European Standard EN 314-2 for Class 1 plywood. The optimum conditions for the bonding of HDPE plywood were 160 °C, 0.8 MPa, and 3 min.


1995 ◽  
Vol 62 (2) ◽  
pp. 133-142 ◽  
Author(s):  
M.J. O'Dogherty ◽  
J.A. Huber ◽  
J. Dyson ◽  
C.J. Marshall

2010 ◽  
Vol 93-94 ◽  
pp. 165-168 ◽  
Author(s):  
Jintamai Suwanprateeb ◽  
Kitiya Wasoontararat ◽  
Waraporn Suvannapruk

In this study, a combination of powder printing technique and two-stepped heat treatment was utilized as a mean to prepare porous high density polyethylene structure. Physical and mechanical properties of the resulting structure were then characterized by porosity measurement and monotonic tensile test. It was found that the relationship between structure and properties was strongly influenced by processing conditions including compositions, treatment times and treatment temperatures. This process could increase the properties of porous high density polyethylene significantly over the single-stepped heat treatment without destroying porous structure. Porous high density polyethylene bodies having a porosity ranging from 46-58 percents with tensile strength up to approximately 4 MPa could be successfully prepared in this study.


2011 ◽  
Vol 3 (1) ◽  
pp. 7
Author(s):  
Sari Mirad Noor

The need of log increace rapidly, mean while forest product decrease, so efficiency on wood process should be done wisely, in the other hand plastic waste is uncompossed material, become an environmental problems. This research aims to determine the impact of particles of type HDPE plastic wastes and twigs/branches of rubber on some physical and mechanical properties of wood. Physical properties have been tested for water content, density, thickness, and water absorption. Although mechanical properties tests were tough Broken/Module of Rufture (MOR) and the preservation of architecture/modulus of elasticity (MOE).     The raw materials used are polyethylene of high density of waste plastic and rubber adhesive urea formaldehyde branch branch. Experimental design used the randomized Completely Design (RCD) 5 x 4, in which each treatment became much like 5 times replicated).The treatment used is the diversity of the composition of the waste of plastic of different types of polyethylene of high density provides a significant effect on the content of water, water absorption, the density and the development of thickness. With regard to the persistence and the fracture of the arch determination not to give a significant effect.Keywords: physical and mechanical properties, particle board, HDPE plastic waste, branch/twig of  rubber.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Min Yu ◽  
Haiyan Mao ◽  
Runzhou Huang ◽  
Zhenghao Ge ◽  
Pujian Tian ◽  
...  

The effect of individual and combined particleboard dust (PB dust) and basalt fibers (BFs) on mechanical and thermal expansion performance of the filled virgin and recycled high density polyethylene (HDPE) composites was studied. It was shown that the use of PB dust had a positive effect on improving mechanical properties and on reducing linear coefficient of thermal expansion (LCTE) values of filled composites, because the adhesive of the particle board held the wheat straw fibers into bundles, which made PB dust have a certain aspect ratio and high strength. Compared with the commonly used commercial WPC products, the flexural strength of PB dust/VHDPE, PB dust/RHDPE, and PB dust/VHDPE/RHDEPE at 40 wt% loading level increased by 79.9%, 41.5%, and 53.9%, respectively. When 40 wt% PB dust was added, the crystallization degree of the composites based on three matrixes decreased to 72.5%, 45.7%, and 64.1%, respectively. The use of PB dust can help lower the composite costs and increase its recyclability. Mechanical properties and LCTE values of composites with combined BF and PB dust fillers varied with PB dust and BF ratio at a given total filler loading level. As the BF portion of the PB dust/BF fillers increased, the LCTE values decreased markedly, which was suggested to be able to achieve a desirable dimensional stability for composites. The process provides a useful route to further recycling of agricultural wastes.


2019 ◽  
Vol 106 ◽  
pp. 22-30
Author(s):  
ADA GOLIASZEWSKA ◽  
GRZEGORZ KOWALUK

Influence of gypsum share on selected properties of high-density wet-formed fiberboard. The purpose of the study was characterize the properties of high-density wet-formed fibreboards produced in laboratory conditions, with a different proportion of gypsum binder. The scope of the research included the examination of the manufactured boards in terms of their selected physical and mechanical properties, in order to determine the influence of gypsum share on the properties of the boards. Studies have shown that the non-zero gypsum share (without correlation between the proportion of gypsum and the tested feature) increased the contact angle of the tested panels and increased thickness swelling, water absorbability and surface absorption.


Sign in / Sign up

Export Citation Format

Share Document